Project 4: Machine Learning

CSCI 360 Fall 2022

Released: April 11, 2022
Due: April 29, 2022

Contents

Introduction

Credits

Setup

Provided Code (Part I)

Question 1 (6 points): Perceptron

Question 2 (6 points): Logistic Regression

Neural Network Tips

Provided Code (Part II)

Example: Linear Regression

Question 3 (6 points): Neural Networks and Digit Classification
Question 4: Grid Search (4 points)

Question 5: Evaluation Metrics (2 points)

Question 6: Mental Health Treatment Model (2 points)

Bonus Question: Heart Disease Prediction Analysis (1 point)
Bonus Question: Heart Disease Prediction Open Ended Improvements (3 points)

Submission

10

11

12

12

12

13

14

CSCI 360 Spring 2022 Project 3 - Page 2

In this project you will build a neural network to classify digits and more!

Introduction

This project will be an introduction to machine learning.

The code for this project contains the following files, available from vocareum.

Files you will edit:

models.py

gridSearch.py
mnist_config.py
evaluation.py
survey_hyperparameters.py
analysis.txt

Perceptron and neural network models for a variety of applications
A file to implement grid search.

A file to set the configuration for the digit classification task

A file to to implement evaluation metrics

A file to set the hyperparameters to search over for the survey data
Your analysis for the final question.

Files you should read but NOT edit:

nn.py

Neural network mini-library

Files you can ignore:

autograder.py

backend.py

data
submission_autograder.py

Project autograder

Backend code for various machine learning tasks

Datasets for digit classification and language identification
Submission autograder (generates tokens for submission)

Files to Edit and Submit: You will need to upload all files designated "Files you will edit" above. Please
do not change the other files in this distribution.

Evaluation: Your code will be autograded for technical correctness. Please do not change the names of
any provided functions or classes within the code, or you will wreak havoc on the autograder. However,
the correctness of your implementation — not the autograder’s judgements — will be the final judge of
your score. If necessary, we will review and grade assignments individually to ensure that you receive due
credit for your work.

Academic Dishonesty: You know the drill. Don’t copy your classmates’ codes. We will know.

Proper Dataset Use: Part of your score for this project will depend on how well the models you train
perform on the test set included with the autograder. We do not provide any APIs for you to access the
test set directly. Any attempts to bypass this separation or to use the testing data during training will be
considered cheating.

Credits

This project was adapted from a 2019 CS188 project from Berkeley.!

'https://inst.eecs.berkeley.edu/ cs188/sp19/project5.html

CSCI 360 Spring 2022 Project 3 - Page 3

Setup

For this project, you will need to install the following libraries (make sure your conda environment is
activated first):

numpy, which provides support for large multi-dimensional arrays
conda install numpy
matplotlib, a 2D plotting library
conda install matplotlib
pandas, a data analysis and manipulation tool,
conda install pandas
sklearn, a machine learning tool for python, also contains some data processing tools,
conda install scikit-learn

To test that everything has been installed, run:
python autograder.py —--check-dependencies

If numpy and matplotlib are installed correctly, you should see a window pop up where a line segment
spins in a circle.

Provided Code (Part I)

For this project, you have been provided with a neural network mini-library (nn . py) and a collection of
datasets (backend. py).

The library in nn . py defines a collection of node objects. Each node represents a real number or a matrix
of real numbers. Operations on Node objects are optimized to work faster than using Python’s built-in
types (such as lists).

Here are a few of the provided node types:

- nn.Constant represents a matrix (2D array) of floating point numbers. It is typically used to
represent input features or target outputs/labels. Instances of this type will be provided to you by
other functions in the API; you will not need to construct them directly

« nn.Parameter represents a trainable parameter of a perceptron or neural network

« nn.DotProduct computes a dot product between its inputs

1
1+e—%

« nn.Sigmoid computes the element-wise sigmoid function of its inputs:

« nn.ScalarMatrixMultiply multiplies every element in the matrix by a scalar.

http://www.numpy.org/
https://matplotlib.org/
https://pandas.pydata.org/
https://scikit-learn.org/stable/index.html

CSCI 360 Spring 2022 Project 3 - Page 4

Additional provided functions:
« nn.as_scalar can extract a Python floating-point number from a node.

When training a perceptron or neural network, you will be passed a dataset object. You can retrieve batches
of training examples by calling dataset.iterate_once (batch_size):

for x, y in dataset.iterate_once (batch_size):

For example, let’s extract a batch of size 1 (i.e. a single training example) from the perceptron training
data:

>>> batch_size =1

>>> for x, y in dataset.iterate_once (batch_size):
print (x)
print (y)
break

<Constant shape=1x3 at 0x11a8856a0>
<Constant shape=1x1l at 0x11a89efd0>

The input features x and the correct label y are provided in the form of nn.Constant nodes. The shape
of xwillbebatch_size x num_features,andtheshapeof yisbatch_size x num_outputs.
Here is an example of computing a dot product of x with itself, first as a node and then as a Python number.

>>> nn.DotProduct (x, x)

<DotProduct shape=1xl at 0x11a89%edd8>
>>> nn.as_scalar (nn.DotProduct (x, X))
1.9756581717465536

Question 1 (6 points): Perceptron

Before starting this part, be sure you have numpy and matplotlib installed!

In this part, you will implement a binary perceptron. Your task will be to complete the implementation of
the PerceptronModel class in models.py.

For the perceptron, the output labels will be either 1 or —1, meaning that data points (x, y) from the
dataset will have y be a nn.Constant node that contains either 1 or —1 as its entries.

We have already initialized the perceptron weights self.w to be a 1 x dimensions parameter node. The
provided code will include a bias feature inside x when needed, so you will not need a separate parameter
for the bias.

Your tasks are to:

Implement the run (self, x) method. This should compute the dot product of the stored weight vector
and the given input, returning an nn . Dot Product object. Implement get_prediction (self, x),

CSCI 360 Spring 2022 Project 3 - Page 5

which should return 1 if the dot product is non-negative or —1 otherwise. Youshouldusenn.as_scalar
to convert a scalar Node into a Python floating-point number. Write the train (self) method. This
should repeatedly loop over the data set and make updates on examples that are misclassified. Use the
update method of the nn.Parameter class to update the weights. When an entire pass over the data set
is completed without making any mistakes, 100% training accuracy has been achieved, and training can
terminate. In this project, the only way to change the value of a parameter is by calling

parameter.update (direction, multiplier), which will perform the update to the weights:

weights <- weights +direction Xxmultiplier

The direction argument is a Node with the same shape as the parameter, and the multiplier argument is a
Python scalar.

To test your implementation, run the autograder:
python autograder.py —-g gl

Note: the autograder should take at most 20 seconds or so to run for a correct implementation. If the
autograder is taking forever to run, your code probably has a bug.

Question 2 (6 points): Logistic Regression

For this question, you will implement a logistic regression model
You will need to complete the implementation of the LogisticRegressionModel class in models.py.

Your tasks are to:

« Implement LogisticRegressionModel.__init__ with any needed initialization

« Implement LogisticRegressionModel. run to return a batch_size x 1 node that represents
your model’s prediction.

« Implement LogisticRegressionModel.get_prediction to return the class (1 or 0) for a
given input

« Implement LogisticRegressionModel.calculate_log_likelihood_gradient tore-
turn the gradient of the log likelihood of a single datapoint with respect to the input parameters

« Implement LogisticRegressionModel.train, should train your model to maximize the
likelihood of the data using stochastic gradient ascent.

Implement stochastic gradient ascent (1 random sample at a time) for the logistic regression. The logistic
regression slides and discussion section will help you out here.

We provide you with a nn. Sigmoid function that returns the element-wise sigmoid of a matrix (mean-
ing it returns a matrix of the same shape, where each element has been transformed using the sigmoid
function).

Jesse’s logistic regression discussion notes and video may be helpful for this section. The gradient of the
log likelihood for the full dataset is:

Z (yi — d(w - 2;)) a4 (1)

CSCI 360 Spring 2022 Project 3 - Page 6

How does this equation change for a single datapoint?

We provide a dataset .pick_random (batch_size) function that returns a random data sample
from the dataset.

You will be required to fit the logistic regression to a randomly generated data. For which the log-likelihood
of the data given your model should be at least -60.0. You can run the autograder using:

python autograder.py —-gq g2

It is possible that your model may be correct but gets just under -60.0. If your implementation is correct,
it should do this pretty rarely so you can just run the autograder again.

Note: For the logistic regression, you are not required to include a bias term in the calculation of Z. Z = w-x
is good enough. You do not need Z = w - x + (. You are welcome to include it if you understand how to
incorporate it into training.

Neural Network Tips

In the remaining parts of the project, you will implement the following models:
Q3: Handwritten Digit Classification

Q5: Mental Health Prediction Network

Building Neural Nets

Throughout the applications portion of the project, you’ll use the framework provided in nn. py to create
neural networks to solve a variety of machine learning problems. A simple neural network has layers,
where each layer performs a linear operation (just like perceptron). Layers are separated by a non-linearity,
which allows the network to approximate general functions. We’ll use the ReLU operation for our non-
linearity, defined as

relu(x) = max(z,0) (2)

For example, a simple two-layer neural network for mapping an input row vector x to an output vector
f (x) would be given by the function:

f(z) = relu(zWi + b1)Wa + bo (3)

where we have parameter matrices W7 and W5 and parameter vectors b1 and bs to learn during gradient
descent. W; will be an ¢ X h matrix, where ¢ is the dimension of our input vectors z, and h is the hidden
layer size. by will be a size h vector. We are free to choose any value we want for the hidden size (we
will just need to make sure the dimensions of the other matrices and vectors agree so that we can perform
the operations). Using a larger hidden size will usually make the network more powerful (able to fit more
training data), but can make the network harder to train (since it adds more parameters to all the matrices
and vectors we need to learn), or can lead to overfitting on the training data.

We can also create deeper networks by adding more layers, for example a three-layer net:

f(z) = relu(relu(z x Wi + b1)Wa + ba) W3 + b3 (4)

Note on Batching: For efficiency, you will be required to process whole batches of data at once rather
than a single example at a time. This means that instead of a single input row vector = with size 7, you will

CSCI 360 Spring 2022 Project 3 - Page 7

be presented with a batch of b inputs represented as a b x ¢ matrix X. We provide an example for linear
regression to demonstrate how a linear layer can be implemented in the batched setting.

Note on Randomness: The parameters of your neural network will be randomly initialized, and data
in some tasks will be presented in shuffled order. Due to this randomness, it’s possible that you will still
occasionally fail some tasks even with a strong architecture — this is the problem of local optima! This
should happen very rarely, though - if when testing your code you fail the autograder twice in a row for
a question, you should explore other architectures.

Practical tips: Designing neural nets can take some trial and error. Here are some tips to help you along
the way:

+ Be systematic. Keep a log of every architecture you’ve tried, what the hyperparameters (layer sizes,
learning rate, etc.) were, and what the resulting performance was. As you try more things, you can
start seeing patterns about which parameters matter. If you find a bug in your code, be sure to cross
out past results that are invalid due to the bug.

« Start with a shallow network (just two layers, i.e. one non-linearity). Deeper networks have expo-
nentially more hyperparameter combinations, and getting even a single one wrong can ruin your
performance. Use the small network to find a good learning rate and layer size; afterwards you can
consider adding more layers of similar size.

« If your learning rate is wrong, none of your other hyperparameter choices matter. You can take a state-
of-the-art model from a research paper, and change the learning rate such that it performs no better
than random. A learning rate too low will result in the model learning too slowly, and a learning
rate too high may cause loss to diverge to infinity. Begin by trying different learning rates while
looking at how the loss decreases over time.

+ Smaller batches require lower learning rates. When experimenting with different batch sizes, be aware
that the best learning rate may be different depending on the batch size. Refrain from making the
network too wide (hidden layer sizes too large). If you keep making the network wider accuracy will
gradually decline, and computation time will increase quadratically in the layer size — you’re likely
to give up due to excessive slowness long before the accuracy falls too much. The full autograder
for all parts of the project takes 2-12 minutes to run with staff solutions; if your code is taking much
longer you should check it for efficiency.

« If your model is returning Infinity or NaN, your learning rate is probably too high for your current
architecture.
« Recommended values for your hyperparameters:
Hidden layer sizes: between 10 and 512

Batch size: between 1 and the size of the dataset. For Q3, we require that total size of the dataset
be evenly divisible by the batch size.

Learning rate: between 0.001 and 1.0

Number of layers: between 2 and 4

CSCI 360 Spring 2022 Project 3 - Page 8

Provided Code (Part II)

Here is a full list of nodes available in nn.py. You will make use of these in the remaining parts of the
assignment:

- nn.Constant represents a matrix (2D array) of floating point numbers. It is typically used to
represent input features or target outputs/labels. Instances of this type will be provided to you by
other functions in the API; you will not need to construct them directly

« nn.Parameter represents a trainable parameter of a perceptron or neural network. All parame-
ters must be 2-dimensional.
Usage: nn.Parameter (n, m) constructs a parameter with shape n X m.

+ nn.Add adds matrices element-wise
Usage: nn.Add (x, y) accepts two nodes of shape batch_size X num_features and con-
structs a node that also has shape batch_size X num_features.

« nn.AddBias adds a bias vector to each feature vector
Usage: nn.AddBias (features, bias) accepts features of shape
batch_size X num_features and bias of shape 1 X num_features, and constructs a node
that has shape batch_size X num_features.

« nn.Linear applies a linear transformation (matrix multiplication) to the input
Usage: nn.Linear (features, weights) accepts features of shape
batch_size X num_input_features and weights of shape
num_input_features X num_output_features, and constructs a node that has shape
batch_size X num_output_features.

« nn.ReLU applies the element-wise Rectified Linear Unit nonlinearity relu (x) =max (x, 0) . This
nonlinearity replaces all negative entries in its input with zeros.
Usage: nn.ReLU (features), which returns a node with the same shape as the input.

« nn.SquareLoss computes a batched square loss, used for regression problems
Usage: nn.Squareloss (a, b),whereaandb bothhave shapebatch_sizexnum_outputs.

« nn.SoftmaxLoss computes a batched softmax loss, used for classification problems
Usage: nn.SoftmaxLoss (logits, labels), where logits and labels both have shape
batch_size x num_classes. The term "logits" refers to scores produced by a model, where
each entry can be an arbitrary real number. The labels, however, must be non-negative and have
each row sum to 1. Be sure not to swap the order of the arguments! Do not use nn.DotProduct
for any model other than perceptron or logistic regression.

The following methods are available in nn . py:

« nn.gradients computes gradients of a loss with respect to provided parameters.
Usage: nn.gradients (loss, [parameter_1l, parameter_2, ..., parameter_n])
will return a list [gradient_1, gradient_2, ..., gradient_n], where each element
isan nn.Constant containing the gradient of the loss with respect to a parameter.

« nn.as_scalar can extract a Python floating-point number from a loss node. This can be useful
to determine when to stop training. Usage: nn.as_scalar (node), where node is either a loss
node or has shape 1 x 1.

CSCI 360 Spring 2022 Project 3 - Page 9

Example: Linear Regression

As an example of how the neural network framework works, let’s fit a line to a set of data points. We’ll
start four points of training data constructed using the function y = 7z¢ + 8z + 3. In batched form, our
data is:

0 0 3
0 1 11
X = 10 and Y = 10
1 1 18

Suppose the data is provided to us in the form of nn.Constant nodes:

>>> x
<Constant shape=4x2 at 0x10a30fe80>
>>> vy
<Constant shape=4x1 at 0x10a30fef0>

Let’s construct and train a model of the form f(z) = x¢ X mo + x1 X my + b. If done correctly, we should
be able to learn than my = 7, m; = 8, and b = 3.

First, we create our trainable parameters. In matrix form, these are:
m

M= [0] and B = [b]
mi

Which corresponds to the following code:

m = nn.Parameter (2, 1)
b = nn.Parameter (1, 1)

Printing them gives:

>>> m
<Parameter shape=2x1 at 0x112b8b_208>
>>> b
<Parameter shape=1xl at 0x112b8beb8>

Next, we compute our model’s predictions for y:

xm = nn.Linear(x, m)
predicted_y = nn.AddBias (xm, b)

Our goal is to have the predicted y-values match the provided data. In linear regression we do this by
minimizing the square loss:

L= % E(z,y) (y — f(x))?

We construct a loss node:

loss = nn.Squareloss (predicted_y, V)

CSCI 360 Spring 2022

Project 3 - Page 10

In our framework, we provide a method that will return the gradients of the loss with respect to the

parameters:
grad_wrt_m, grad_wrt_b = nn.gradients(loss, [m, Db]l)

Printing the nodes used gives:

>>> xm

<Linear shape=4x1 at 0x11a869588>
>>> predicted_y

<AddBias shape=4x1 at 0x11c23aa9%90>
>>> loss

<SquarelLoss shape=() at 0x11c23a240>
>>> grad_wrt_m

<Constant shape=2x1 at 0x1la8cb_160>
>>> grad_wrt_b

<Constant shape=1x1l at 0x11a8cb588>

We can then use the update method to update our parameters. Here is an update for m, assuming we have
already initialized a multiplier variable based on a suitable learning rate of our choosing:

m.update (grad_wrt_m, multiplier)

If we also include an update for b and add a loop to repeatedly perform gradient updates, we will have the

full training procedure for linear regression.

Question 3 (6 points): Neural Networks and Digit Classification

For this question, you will implement a generic neural network class and then train it to classify hand-

drawn digits from the MNIST dataset.

« Complete the implementation of the ClassificationModel class in models . py. You will design this
class to instantiate a network with the parameters matching those given to the constructor.

+ The return value from ClassificationModel. run should be a batch_size x output_dim node
containing scores, where higher scores indicate a higher probability of the class being the correct

one. Do not put a ReLU activation after the last layer of the network.

« ClassificationModel.get_loss should return the loss node computed for a batch of x and
y datapoints. It should use nn. SoftmaxLoss as the loss function. Remember your model is trying

to minimize the loss.

» ClassificationModel.train should train the model with the given arguments for the hy-

perparameters.

« Set the training hyperparameters in mnist_config.py

CSCI 360 Spring 2022 Project 3 - Page 11

The dataset to use contains digit images. Each digit is of size 28 x 28 pixels, the values of which are stored
in a 784 -dimensional vector of floating point numbers. Each output we provide is a 10-dimensional vector
which has zeros in all positions, except for a one in the position corresponding to the correct class of the
digit. The output will indicate the score for a digit belonging to a particular class (0-9).

In the file mnist_config.py, you will set the hyperparameters in student_config to those you
want to use for mnist digit classification.

To receive points for this question, your model should achieve an accuracy of at least 97% on the test set.
Note that the test grades you on test accuracy, while you only have access to validation accuracy - so if
your validation accuracy meets the 97% threshold, you may still fail the test if your test accuracy does
not meet the threshold. Therefore, it may help to set a slightly higher stopping threshold on validation
accuracy, such as 97.5% or 98%.

To test your implementation, run the autograder:

python autograder.py -gq g3

Question 4: Grid Search (4 points)

Grid search is a way of identifying the best hyperparameters in an organized fashion. Under grid search,
you define a set of possible choices for each hyperparameter, and then evaluate every combination of those
parameters, selecting the one that gives the best validation score.

batch-size

learning-rate

Table 1: Table showing the results of running grid search. Colored cells represent the validation score, the
green cell indicates the best score and therefore the best hyperparameters are batch size = 32 and learning
rate = 0.1

For this question, you will modify the code in gridSearch.py to run grid search. You should modify

« GridSearch.grid_search_configurations to return a list of hyperparameter configura-
tions to run

« GridSearch.train_and_eval toinstantiate a ClassicationNeuralNetwork model based on the
passed in hyperparameters config, train the model based on the hyperparameters config and the
training dataset, and evaluate the trained model using ClassicationNeuralNetwork.eval
with the validation dataset.

« GridSearch.perform grid_searchtocall self.train_and_eval with each hyperpa-
rameter configuration. It should return the best model, score, and the configuration that led to it.

To test your implementation, run the autograder:

python autograder.py —-gq g4

CSCI 360 Spring 2022 Project 3 - Page 12

Question 5: Evaluation Metrics (2 points)

For this question you will be implementing an evaluation function that returns three evaluation metrics:
accuracy, precision, and recall.

In the file evaluation. py, implement the function get_eval_metrics.

.. Fcorrect
Remember that accuracy is Fiotal

#irue positive
F#true positive + # false positive

Precision is

#true positive
#truepositive + # false negative®

Recall is

You can test your implementation with:

python autograder.py —-gq gb

Question 6: Mental Health Treatment Model (2 points)

In this section we will have you work on an Al for Social Good problem. We will give you access to data
derived from a mental health in tech survey with the goal of developing a model that can predict if a tech
worker should seek mental health treatment/be guided towards such resources.

One of the pieces of data is whether an employee actually did seek treatment for mental health issues. We
will be using this data as a proxy for whether a worker should seek mental health treatment. You will be
training a neural network using grid search to do this task using treatment data as the label and other data
from the survey as features. (We provide the dataset class).

This will use your previous implementations of classification model, grid search, and evaluation so make
sure those are correct before doing this question.

Your job is to
« Set the hyperparameter search space in survey_hyperparameters.py.

Note: In Q3, you implemented a generic classification model that could do multi-class classification. The
current problem is what is called a binary classification task (there are only two classes, the positive class
and negative class). This can be implemented with a single score (like the perceptron and logistic regression
you previously implemented) or with a separate score for the positive and negative class and the max
score indicates the predicted class. That is what you will do in this problem in order to re-use the previous
network design.

To pass this section your model should have a test accuracy > 78%.

You can evaluate your implementation with:

python autograder.py —-gq g6

Bonus Question: Heart Disease Prediction Analysis (1 point)

This question involves creating a prediction model for heart disease based on physiological (e.g. age) and
behavioral data (e.g. smoking history). The description of the dataset can be found here. The positive class

https://www.kaggle.com/datasets/kamilpytlak/personal-key-indicators-of-heart-disease

CSCI 360 Spring 2022 Project 3 - Page 13

means the patient has had heart disease.
We have provided a script that trains various models and prints the output.

You can run this script by running
python heart_disease.py

This trains and prints various evaluation metrics for each trained model. Your job is to answer the following
question.

Part 1: Suppose a hospital would like to deploy one of these models to give extra preventative advice to
patients at risk of heart disease. Doing this is inexpensive for the hospital and has the possibility to save
lives. Risk of heart disease is generally low among the population so the hospital would not want to give
this advice to every single patient, however, their main priority is that they want to make absolutely sure
that as many at risk individuals get the advice as possible. Between the metrics accuracy, precision, and
recall, which metric does the hospital care most about?

In the file bonusQuestionAnalysis.py, enter your answer to this question as student_answer_1

Part 2: Based on the information in question 1, which model should the hospital choose to deploy? Answer
will be one of ’knn’, "logistic regression’, ’decision tree’, or ‘neural network’.

In the file bonusQuestionAnalysis.py, enter your answer to this question as student_answer_2

This question will not be graded by the autograder script you have access to. However, to check that your
answer is valid, you can run

python autograder.py —-g bonusl

Bonus Question: Heart Disease Prediction Open Ended Improvements (3
points)

Make sure to answer the previous questions before making changes here!!! Some of your changes could
affect the output of the heart_disease.py script.

For this question we want to give you the chance to improve the hospital’s model.

You will be able to make changes to
« How the data is processed (check out the process_data function). For more information on the
data check out the data source.
« What model is used

« What hyperparameters you train with for each model or how you select hyperparameters (maybe
using grid search)

« How model output is used to make predictions (helpful for imbalanced data — thresholding data,
under/oversampling)

+ And any other improvements you can think of

https://www.kaggle.com/datasets/kamilpytlak/personal-key-indicators-of-heart-disease
https://developers.google.com/machine-learning/crash-course/classification/thresholding
https://www.kaggle.com/code/residentmario/undersampling-and-oversampling-imbalanced-data/notebook

CSCI 360 Spring 2022 Project 3 - Page 14

You will edit the heart_disease.py file to make these changes. You will need to change the function
run_student_model to train and create your model. If given an X_test argument, it needs to return
your predictions for that data. This script uses sklearn and we highly recommend you implement your
models using it as well. You can look through the script for examples of how we did it to help you.

Note that X_test will be generated using the same processing as process_data should you choose to
make changes there. We do require that the "HeartDisease’ values remain the same in the data when you
process it.

Your model will be graded using F1 score. F1 score is defined as

5 precision *x recall
* .
precision + recall

This score is good for imbalanced data because it requires both precision and recall to be good.

If your model has a good Area Under the Curve (AUC), it is likely that you can tune the threshold for
predicting each class to get a good F1 score. AUC says how your model performs on the true positive rate
and false positive rate at different decision thresholds. See this link for more information on AUC.

While the leaderboard will just be the raw F1 score, your grade for the question will be calculated based
on a re-scaled version of that. An F1 below 0.2 will receive 0 points and an F1 score above 0.4 will receive
full points. Anything in between will be scaled appropriately.

F—-0.2

p—))] 1 NA_0o
Grade = points available x min(1, maz(0, 0.4 — 0'2))

(6)
The following will give you your grade:

python autograder —-g bonus2

If you are unsure about any changes you want to make, feel free to ask on Piazza.
Have fun!
Submission

To submit your code, upload all the files you edited to Vocareum, and CLICK THE BLUE SUBMIT
BUTTON.

https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc

	Introduction
	Credits
	Setup
	Provided Code (Part I)
	Question 1 (6 points): Perceptron
	Question 2 (6 points): Logistic Regression
	Neural Network Tips
	Provided Code (Part II)
	Example: Linear Regression
	Question 3 (6 points): Neural Networks and Digit Classification
	Question 4: Grid Search (4 points)
	Question 5: Evaluation Metrics (2 points)
	Question 6: Mental Health Treatment Model (2 points)
	Bonus Question: Heart Disease Prediction Analysis (1 point)
	Bonus Question: Heart Disease Prediction Open Ended Improvements (3 points)
	Submission

