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Introduction

In this project, you will implement value iteration and Q-learning. You will test your agents �rst on Grid-
world, then apply them to Crawler (a simulated robot controller) and Pacman.

Credits

This project was adapted from a project from CIS467 at Syracuse University.1 This project was previously
developed at UC Berkeley2 by John DeNero, Dan Klein, Pieter Abbeel, and many others.

Getting Started

Similar to previous projects, to work on this assignment:

1. On the Vocareum Project 3 workspace, download the codebase by clicking "Download startercode"
under "Actions" (screenshot below).

2. Fill in the missing code segments withinvalueIterationAgents.py, qlearningAgents.py,
and analysis.py as per the instructions in this handout.

3. Upload these �les back to Vocareum and submit.

Autograder

As in previous projects, this project includes an autograder for you to grade your solutions on your ma-
chine. To run on all questions, use this command:

python autograder.py

To run on one particular question, such as q2, use this command:

python autograder.py -q q2

To run on one particular test, use this command:

python autograder.py -t test_cases/q2/1-bridge-grid
1https://web.ecs.syr.edu/~ffiorett/classes/cis467/fa21/projects/p3.html
2http://ai.berkeley.edu

https://web.ecs.syr.edu/~ffiorett/classes/cis467/fa21/projects/p3.html
http://ai.berkeley.edu


CSCI 360 Fall 2022 Project 3 - Page 3

File Manifest

This project consists of the following �les:

Files you will edit:

valueIterationAgents.py Value iteration agents for solving known MDPs.
qlearningAgents.py Q-learning agents for Gridworld, Crawler and Pacman.
analysis.py A �le to put your answers to questions given in the project.

Files you should read but NOT edit:

mdp.py De�nes methods on general MDPs.
learningAgents.py De�nes the base classes ValueEstimationAgent and

QLearningAgent, which your agents will extend.
util.py Utilities, including util.Counter.
gridworld.py The Gridworld implementation.
featureExtractors.py Classes for extracting features on (state, action) pairs. Used for the

approximate Q-learning agent (in qlearningAgents.py).

Files you can ignore:

environment.py Abstract class for general reinforcement learning environments.
Used by gridworld.py

graphicsGridworldDisplay.py Gridworld graphical display.
graphicsUtils.py Graphics utilities.
textGridworldDisplay.py Plugin for the Gridworld text interface.
crawler.py The crawler code and test harness. You will run this but not edit it.
graphicsCrawlerDisplay.py GUI for the crawler robot.
autograder.py Project autograder.
testParser.py Parses autograder test and solution �les.
testClasses.py General autograding test classes.
test_cases/ Directory containing the test cases for each question.
reinforcementTestClasses.py Autograding test classes speci�c to Project 3.

Gridworld

To get started, run Gridworld in manual control mode, which uses the arrow keys:

python gridworld.py -m

You will see the two-exit layout from class. The blue dot is the agent. Note that when you press up, the
agent only actually moves north 80% of the time. Such is the life of a Gridworld agent!
You can control many aspects of the simulation. A full list of options is available by running:

python gridworld.py -h

The default agent moves randomly:

python gridworld.py -g MazeGrid
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You should see the random agent bounce around the grid until it happens upon an exit. Not the �nest hour
for an AI agent.
Note: The Gridworld MDP is such that you �rst must enter a pre-terminal state (the double boxes shown
in the GUI) and then take the special ’exit’ action before the episode actually ends (in the true terminal
state called TERMINAL_STATE, which is not shown in the GUI). If you run an episode manually, your
total return may be less than you expected, due to the discount rate (-d to change; 0.9 by default).
Look at the console output that accompanies the graphical output (or use -t for all text). You will be told
about each transition the agent experiences (to turn this o�, use -q).
As in Pacman, positions are represented by (x,y) Cartesian coordinates and any arrays are indexed by
[x][y], with ’north’ being the direction of increasing y, etc. By default, most transitions will receive
a reward of zero, though you can change this with the living reward option (-r).
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Questions (21 points)

Question 1 (4 points): Value Iteration

Recall the value iteration state update equation:

Vk+1(s)← max
a

∑
s′

T (s, a, s′)
[
R(s, a, s′) + γVk(s

′)
]

InvalueIterationAgents.py, write a value iteration agent in theValueIterationAgent class.
Your value iteration agent is an o�ine planner, not a reinforcement learning agent, and so the relevant
training option is the number of iterations of value iteration it should run (option -i) in its initial planning
phase. ValueIterationAgent takes an MDP on construction and runs value iteration for the speci�ed
number of iterations before the constructor returns.
Value iteration computes k-step estimates of the optimal values, Vk. In addition to running value iteration,
implement the following methods for ValueIterationAgent using Vk:

• computeActionFromValues(state) computes the best action according to the value func-
tion given by self.values.

• computeQValueFromValues(state, action) returns the Q-value of the
(state, action) pair given by the value function given by self.values.

These quantities are all displayed in the GUI: values are numbers in squares, Q-values are numbers in
square quarters, and policies are arrows out from each square.
Important: Make sure that when you generate Vk+1, you do not accidentally modify Vk at the same time.
In your implementation, you should create a new set of values on each iteration instead of trying to modify
the existing value function in-place.
Hint: We recommend using the util.Counter class in util.py, which is a dictionary with a default
value of zero. However, be careful if you decide to use the argMax method — the actual argmax you want
may be a key not in the counter. This assignment is completely feasible without the argMax method.
Note: Make sure to handle the case where a state has no available actions in an MDP (think about what
this means for future rewards).
To test your implementation, run the autograder:

python autograder.py -q q1

The following command loads your ValueIterationAgent, which will compute a policy by running
value iteration for 100 iterations (-i) and then execute the policy 10 times (-k). Press any key to cycle
through values, Q-values, and the simulation. You should �nd that the value of the start state (V(start),
which you can read o� of the GUI) and the empirical resulting average reward (printed after the 10 rounds
of execution �nish) are quite close.

python gridworld.py -a value -i 100 -k 10

Hint: On the default BookGrid, running value iteration for 5 iterations should give you this output:
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Grading: Your value iteration agent will be graded on a new grid. We will check your values, Q-values,
and policies after �xed numbers of iterations and at convergence (e.g. after 100 iterations).

Question 2 (1 point): Bridge Crossing Analysis

BridgeGrid is a grid world map with a low-reward terminal state and a high-reward terminal state
separated by a narrow "bridge", on either side of which is a chasm of high negative reward. The agent
starts near the low-reward state. With the default discount of 0.9 and the default noise of 0.2, the optimal
policy does not cross the bridge. Change only ONE of the discount and noise parameters so that the
optimal policy causes the agent to attempt to cross the bridge. Put your answer in question2() of
analysis.py. (Noise refers to how often an agent ends up in an unintended successor state when they
perform an action.) The default corresponds to:

python gridworld.py -a value -i 100 -g BridgeGrid \
--discount 0.9 --noise 0.2

Grading: We will automatically check that you only changed one of the given parameters, and that with
this change, a correct value iteration agent should cross the bridge. To check your answer, run the auto-
grader:

python autograder.py -q q2
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Question 3 (5 points): Policies

Consider the DiscountGrid layout, shown below. This grid has two terminal states with positive payo�
(in the middle row), a close exit with payo� +1 and a distant exit with payo� +10. The bottom row of the
grid consists of terminal states with negative payo� (shown in red); each state in this "cli�" region has
payo� -10. The starting state is the yellow square. We distinguish between two types of paths: (1) paths
that "risk the cli�" and travel near the bottom row of the grid; these paths are shorter but risk earning a
large negative payo�, and are represented by the red arrow in the �gure below. (2) paths that "avoid the
cli�" and travel along the top edge of the grid. These paths are longer but are less likely to incur huge
negative payo�s. These paths are represented by the green arrow in the �gure below.

In this question, you will choose settings of the discount, noise, and living reward parameters for this MDP
to produce optimal policies of several di�erent types. Your setting of the parameter values for each
part should have the property that, if your agent followed its optimal policy without being sub-
ject to any noise, it would exhibit the given behavior. If a particular behavior is not achieved for any
setting of the parameters, assert that the policy is impossible by returning the string ’NOT POSSIBLE’.
Here are the optimal policy types you should attempt to produce:

(a) Prefer the close exit (+1), risking the cli� (-10)

(b) Prefer the close exit (+1), but avoiding the cli� (-10)

(c) Prefer the distant exit (+10), risking the cli� (-10)

(d) Prefer the distant exit (+10), avoiding the cli� (-10)

(e) Avoid both exits and the cli� (so an episode should never terminate)

To check your answers, run the autograder:

python autograder.py -q q3
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question3a() through question3e() should each return a 3-item tuple of (discount, noise, living
reward) in analysis.py.
Note: You can check your policies in the GUI by passing the appropriate parameters to gridworld.py.
For example, using a correct answer to 3(a), the arrow in (0,1) should point east, the arrow in (1,1) should
also point east, and the arrow in (2,1) should point north.
Note: On some machines you may not see an arrow. In this case, press a button on the keyboard to switch
to Q-value display, and mentally calculate the policy by taking the arg max of the available Q-values for
each state.
Grading: We will check that the desired policy is returned in each case.

Question 4 (4 points): Q-Learning

Your value iteration agent does not actually learn from experience. Rather, it ponders its MDP model in
advance to arrive at a complete policy before ever interacting with a real environment. When it does
interact with the environment, it simply follows the precomputed policy (i.e. it becomes a re�ex agent).
This distinction may be subtle in a simulated environment like a Gridworld, but it is very important in the
real world, where the real MDP is not available.
You will now write a Q-learning agent, which does very little on construction, but instead learns by trial and
error from interactions with the environment through its update(state, action, nextState,
reward)method. A stub of a Q-learner is speci�ed in QLearningAgent in qlearningAgents.py,
and you can select it with the option -a q. For this question, you must implement the update,
computeValueFromQValues, getQValue, and computeActionFromQValues methods.
Note: Recall that the Q-learning update is

Q(s, a)← (1− α)Q(s, a) + α

[
r + γmax

a′
Q(s′, a′)

]
Note: For computeActionFromQValues, you should break ties randomly for better behavior. The
random.choice() function will help. In a particular state, actions that your agent hasn’t seen before
still have a Q-value, speci�cally a Q-value of zero, and if all of the actions that your agent has seen before
have a negative Q-value, an unseen action may be optimal.
Important: Make sure that in your computeValueFromQValues and
computeActionFromQValues functions, you only access Q-values by calling getQValue. This ab-
straction will be useful for question 10 when you override getQValue to use features of state-action
pairs rather than state-action pairs directly.
With the Q-learning update in place, you can watch your Q-learner learn under manual control, using the
keyboard:

python gridworld.py -a q -k 5 -m

-k will control the number of episodes that your agent interacts in the environment. Since Q-learning
trains an agent based on experience collected in the environment, this is also the number of episodes that
your agent gets to learn. Watch how the agent learns about the state it was just in, not the one it moves
to, and "leaves learning in its wake."
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Hint: To help with debugging, you can turn o� noise by using the --noise 0.0 parameter (though
this obviously makes Q-learning less interesting). If you manually steer Pacman north and then east along
the optimal path for four episodes, you should see the following Q-values:

Grading: We will run your Q-learning agent and check that it learns the same Q-values and policy as our
reference implementation when each is presented with the same set of examples. To grade your imple-
mentation, run the autograder:

python autograder.py -q q4

Question 5 (2 points): Epsilon Greedy

Complete your Q-learning agent by implementing epsilon-greedy action selection in getAction, mean-
ing it chooses random actions an epsilon fraction of the time, and follows its current best Q-values other-
wise. Note that choosing a random action may result in choosing the best action — that is, you should not
choose a random sub-optimal action, but rather any random legal action.
You can choose an element from a list uniformly at random by calling the random.choice() function.
You can simulate a binary variable with probability p of success by using util.flipCoin(p), which
returns True with probability p and False with probability 1− p.
After implementing the getAction method, observe the following behavior of the agent in Gridworld
(with epsilon = 0.3).

python gridworld.py -a q -k 100

Your �nal Q-values should resemble those of your value iteration agent, especially along well-traveled
paths. However, your average returns will be lower than the Q-values predict because of the random
actions and the initial learning phase.
You can also observe the following simulations for di�erent epsilon values. Does the behavior of the agent
match what you expect?
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python gridworld.py -a q -k 100 --noise 0.0 -e 0.1
python gridworld.py -a q -k 100 --noise 0.0 -e 0.9

To test your implementation, run the autograder:

python autograder.py -q q5

With no additional code, you should now be able to run a Q-learning crawler robot. This command will
invoke the crawling robot using your Q-learner. Play around with the various learning parameters to see
how they a�ect the agent’s policies and actions. Note that the step delay is a parameter of the simula-
tion, whereas the learning rate (alpha, α) and epsilon are parameters of your learning algorithm, and the
discount factor is a property of the environment.

python crawler.py

If this doesn’t work, you’ve probably written some code too speci�c to the Gridworld problem and you
should make it more general to all MDPs.

Question 6 (1 point): Bridge Crossing Revisited

First, train a completely random Q-learner with the default learning rate (alpha) on the noiseless Bridge-
Grid for 50 episodes and observe whether it �nds the optimal policy.

python gridworld.py -a q -k 50 -n 0 -g BridgeGrid -e 1

Now try the same experiment with an epsilon of 0. Is there an epsilon and a learning rate for which it is
highly likely (greater than 99%) that the optimal policy will be learned after 50 iterations? question6()
in analysis.py should return EITHER a 2-item tuple of (epsilon, learning rate) OR the string ’NOT
POSSIBLE’ if there is none. Epsilon is controlled by -e, learning rate by -l.
Note: Your response should not depend on the exact tie-breaking mechanism used to choose actions.
This means your answer should be correct even if for instance we rotated the entire bridge grid world 90
degrees.
To grade your answer, run the autograder:

python autograder.py -q q6

Question 7 (1 point): Q-Learning and Pacman

Time to play some Pacman! Pacman will play games in two phases. First, in the training phase, Pacman
will begin to learn about the values of positions and actions. Since it takes a very long time to learn
accurate Q-values even for tiny grids, Pacman’s training games run in quiet mode by default, with no GUI
(or console) display. Once Pacman’s training is complete, he enters the second phase, testing. During
testing, Pacman’s self.epsilon and self.alpha (the learning rate) will be set to 0.0, e�ectively
stopping Q-learning and disabling exploration, in order to allow Pacman to exploit his learned policy. Test
games are shown in the GUI by default. Without any code changes you should be able to run Q-learning
Pacman for very tiny grids as follows:
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python pacman.py -p PacmanQAgent -x 2000 -n 2010 -l smallGrid

Note that PacmanQAgent is already de�ned for you in terms of the QLearningAgent you have writ-
ten. PacmanQAgent is only di�erent in that it has default learning parameters that are more e�ective
for the Pacman problem (epsilon=0.05, alpha=0.2, gamma=0.8). You will receive full credit
for this question if the command above works without exceptions and your agent wins at least 80% of the
time. The autograder will run 100 test games after the 2000 training games.
To grade your answer, run:

python autograder.py -q q7

Hint: If your QLearningAgent works for gridworld.py and crawler.py but does not seem
to be learning a good policy for Pacman on smallGrid, it may be because your getAction and/or
computeActionFromQValues methods do not in some cases properly consider unseen actions. In
particular, because unseen actions have by de�nition a Q-value of zero, if all of the actions that have been
seen have negative Q-values, an unseen action may be optimal. Beware of the argMax method from
util.Counter!
Note: If you want to experiment with learning parameters, you can use the option -a, for example -a
epsilon=0.1,alpha=0.3,gamma=0.7. These values will then be accessible as self.epsilon,
self.gamma, and self.alpha inside the agent.
Note: While a total of 2010 games will be played, the �rst 2000 games will not be displayed because of the
option -x 2000, which designates the �rst 2000 games for training (no output). Thus, you will only see
Pacman play the last 10 of these games. The number of training games is also passed to your agent as the
option numTraining.
Note: If you want to watch 10 training games to see what’s going on, use the command:

python pacman.py -p PacmanQAgent -n 10 -l smallGrid -a numTraining=10

During training, you will see output every 100 games with statistics about how Pacman is faring. Epsilon is
positive during training, so Pacman will play poorly even after having learned a good policy: this is because
he occasionally makes a random exploratory move into a ghost. As a benchmark, it should take between
1,000 and 1400 games before Pacman’s rewards for a 100 episode segment becomes positive, re�ecting that
he’s started winning more than losing. By the end of training, it should remain positive and be fairly high
(between 100 and 350).
Make sure you understand what is happening here: the MDP state is the exact board con�guration facing
Pacman, with the now complex transitions describing an entire ply of change to that state. The intermedi-
ate game con�gurations in which Pacman has moved but the ghosts have not replied are not MDP states,
but are bundled in to the transitions.
Once Pacman is done training, he should win very reliably in test games (at least 90% of the time), since
he is now exploiting his learned policy.
However, you will �nd that training the same agent on the seemingly simple mediumGrid does not work
well. In our implementation, Pacman’s average training rewards remain negative throughout training. At
test time, he plays badly, probably losing all of his test games. Training will also take a long time, despite
its ine�ectiveness.
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Pacman fails to win on larger layouts because each board con�guration is a separate state with separate
Q-values. He has no way to generalize that running into a ghost is bad for all positions. Obviously, this
approach will not scale.

Question 8 (3 points): Approximate Q-Learning

Implement an approximate Q-learning agent that learns weights for features of states, where many states
might share the same features. Write your implementation in the ApproximateQAgent class in
qlearningAgents.py, which is a subclass of PacmanQAgent.
Note: Approximate Q-learning assumes the existence of a feature function f(s, a) over state and action
pairs, which yields a vector f1(s, a), .., fi(s, a), .., fn(s, a) of feature values. We provide feature functions
for you in featureExtractors.py. Feature vectors are util.Counter (dictionary-like) objects
containing the non-zero pairs of features and values; all omitted features have value zero.
The approximate Q-function takes the following form:

Q(s, a) =
n∑

i=1

fi(s, a)wi

where each weight wi is associated with a particular feature fi(s, a). In your code, you should implement
the weight vector as a dictionary mapping features (which the feature extractors will return) to weight
values. You will update your weight vectors similarly to how you updated Q-values:

wi ← wi + α ∗ difference ∗ fi(s, a)
difference = (r + γmax

a′
Q(s′, a′))−Q(s, a)

Note that the difference term is the same as in normal Q-learning, and r is the experienced reward.
By default, ApproximateQAgent uses the IdentityExtractor, which assigns a single feature to
every (state,action) pair. With this feature extractor, your approximate Q-learning agent should
work identically to PacmanQAgent. You can test this with the following command:

python pacman.py -p ApproximateQAgent -x 2000 -n 2010 -l smallGrid

Important: ApproximateQAgent is a subclass of QLearningAgent, and it therefore shares several
methods like getAction. Make sure that your methods in QLearningAgent call getQValue instead
of accessing Q-values directly, so that when you override getQValue in your approximate agent, the new
approximate Q-values are used to compute actions.
Once you are con�dent that your approximate learner works correctly with the identity features, run your
approximate Q-learning agent with our custom feature extractor, which can learn to win with ease:

python pacman.py -p ApproximateQAgent -a extractor=SimpleExtractor \
-x 50 -n 60 -l mediumGrid

Even much larger layouts should be no problem for your ApproximateQAgent. (Warning: this may
take a few minutes to train)
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python pacman.py -p ApproximateQAgent -a extractor=SimpleExtractor \
-x 50 -n 60 -l mediumClassic

If you have no errors, your approximate Q-learning agent should win almost every time with these simple
features, even with only 50 training games.
Grading: We will run your approximate Q-learning agent and check that it learns the same Q-values and
feature weights as our reference implementation when each is presented with the same set of examples.
To grade your implementation, run the autograder:

python autograder.py -q q8

Congratulations! You have a learning Pacman agent!

Bonus Questions

We will release bonus questions next week!

Submission

Once you are happy with your score that the autograder gives you, uploadvalueIterationAgents.py,
qlearningAgents.py, and analysis.py to Vocareum and submit. This will run the same auto-
grader on your code. You are welcome to submit as many times as you’d like before the due date!
Note: Make sure you submit on Vocareum, not on Blackboard.
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