
CSCI 360 Project #1: Hungry Pacman Searches for Food!
Released: January 28, 2022

Due: February 11, 2022

Contents

Introduction 2

Question 1: Depth-First Search (DFS) - 3 pts 3

Question 2: Breadth-First Search (BFS) - 3 pts 4

Question 3: Uniform-Cost Search (UCS) - 3 pts 4

Question 4: A* Search - 3 pts 5

Question 5: Finding All the Corners with BFS - 3 pts 5

Question 6: Finding All the Corners with A* - 3 pts 6

1



Extra Credit Exploration: Pacman Explores Superfoods <> 0-2 pts! 7

Submission 8

Introduction

In this project, you will help a Pacman agent find food in his maze world by implementing four
search algorithms — Breadth-First Search, Depth-First Search, Uniform Cost Search, and A*
Search. Your algorithms will not have to deal with enemies (i.e. ghosts) yet BUT you will be able
to play a complete version of Pacman for fun!

As you may know, we will be using Python in this class, including this project. If you’re new to
this language, don’t sweat it! This project will only test your ability to implement these search
algorithms; the Python-specific syntax to learn will be minimal. Nonetheless, we strongly encourage
you to start early and check out Project 0 to find resources for a brief Python introduction/refresher!

Getting Started: In Project 0, we shared how to enroll in and use Vocareum, the assignment
management software we‘re using this semester. We also shared how to install conda and use it to
create an environment. This pacman codebase, borrowed from UC Berkeley1, requires Python 3.6
or later.

To work on and submit this assignment,

1. complete Vocareum and environment setup, as per Project 0
2. on the Vocareum project 1 workspace, download the codebase by clicking “Download

startercode” under “Actions” (screenshot below)

3. fill in the missing code segments within search.py and searchAgent.py as per the instructions
in this handout

4. upload these two files back to Vocareum and submit

Once you‘ve downloaded the codebase, navigate to the root directory. Run the following command
to play a game (use the arrow keys to move):

python pacman.py

Can you beat it? It’s tough! If you’re looking for even more challenge, try replacing the ghost’s
1http://ai.berkeley.edu/project overview.html

2



strategy with one that actively hunts you or actively avoids you when they’re ”scared”:

python pacman.py -g DirectionalGhost

Note: If you’re interested, you can see a complete list of command line options in commands.txt!

Evaluation: You’ll just be editing two files — search.py and searchAgent.py. You’ll be able to
check for correctness as you complete the project with the autograder.py. Simply run:

python autograder.py

Hint: You may find that your for some of these questions, your code solves pacman just fine but the
autograder reports that you failed a few graph test cases. If this is because of node expansion, take a
closer look at when you test if you’ve visited a state. What code should get executed if not?

Question 1: Depth-First Search (DFS) - 3 pts

In searchAgents.py, you’ll find a fully implemented SearchAgent, which plans out a path through
Pacman’s world and then executes that path step-by-step. The search algorithms for formulating a
plan are not implemented – that’s your job.

First, test that the SearchAgent is working correctly by running:

python pacman.py -l tinyMaze -p SearchAgent -a fn=tinyMazeSearch

Now it’s time to write full-fledged generic search functions to help Pacman plan routes! Pseudocode
for the search algorithms you’ll write can be found in the lecture slides. Remember that a search
node must contain not only a state but also the information necessary to reconstruct the path (plan)
which gets to that state.

Important note: All of your search functions need to return a list of actions that will lead the agent
from the start to the goal. These actions all have to be legal moves (valid directions, no moving
through walls).

Important note: Make sure to use the Stack, Queue, and PriorityQueue data structures provided to
you in util.py! These data structure implementations have particular properties which are required
for compatibility with the autograder.

Hint: Each algorithm is very similar. Algorithms for DFS, BFS, UCS, and A* differ only in the
details of how the fringe is managed. So, concentrate on getting DFS right and the rest should be
relatively straightforward. Indeed, one possible implementation requires only a single generic search
method which is configured with an algorithm-specific queuing strategy. (Your implementation
need not be of this form to receive full credit).

Implement the depth-first search (DFS) algorithm in the depthFirstSearch function in search.py. To

3



make your algorithm complete, write the graph search version of DFS, which avoids expanding any
already visited states.

Your code should quickly find solutions for:

python pacman.py -l tinyMaze -p SearchAgent
python pacman.py -l mediumMaze -p SearchAgent
python pacman.py -l bigMaze -z .5 -p SearchAgent

The Pacman board will show an overlay of the states explored, and the order in which they were
explored (brighter red means earlier exploration). Is the exploration order what you would have
expected? Does Pacman actually go to all the explored squares on his way to the goal?

Hint: If you use a Stack as your data structure, the solution found by your DFS algorithm for
mediumMaze should have a length of 130 (provided you push successors onto the fringe in the order
provided by getSuccessors; you might get 246 if you push them in the reverse order). Is this a least
cost solution? If not, think about what depth-first search is doing wrong.

Hint: You may find that your for some of these questions, your code solves pacman just fine but the
autograder reports that you failed a few graph test cases. If this is because of node expansion, take a
closer look at when you test if you’ve visited a state. What code should get executed if not?

Question 2: Breadth-First Search (BFS) - 3 pts

Implement the breadth-first search (BFS) algorithm in the breadthFirstSearch function in search.py.
Again, write a graph search algorithm that avoids expanding any already visited states. Test your
code the same way you did for depth-first search.

python pacman.py -l mediumMaze -p SearchAgent -a fn=bfs
python pacman.py -l bigMaze -p SearchAgent -a fn=bfs -z .5

Does BFS find a least cost solution? If not, check your implementation.

Note: If you’ve written your search code generically, your code should work equally well for the
eight-puzzle search problem without any changes.

python eightpuzzle.py

Question 3: Uniform-Cost Search (UCS) - 3 pts

While BFS will find a fewest-actions path to the goal, we might want to find paths that are “best” in
other senses. Consider mediumDottedMaze and mediumScaryMaze.

4



By changing the cost function, we can encourage Pacman to find different paths. For example, we
can charge more for dangerous steps in ghost-ridden areas or less for steps in food-rich areas, and a
rational Pacman agent should adjust its behavior in response.

Implement the uniform-cost graph search algorithm in the uniformCostSearch function in search.py.
We encourage you to look through util.py for some data structures that may be useful in your
implementation. You should now observe successful behavior in all three of the following layouts,
where the agents below are all UCS agents that differ only in the cost function they use (the agents
and cost functions are written for you):

python pacman.py -l mediumMaze -p SearchAgent -a fn=ucs
python pacman.py -l mediumDottedMaze -p StayEastSearchAgent
python pacman.py -l mediumScaryMaze -p StayWestSearchAgent

Question 4: A* Search - 3 pts

Implement A* graph search in the empty function aStarSearch in search.py. A* takes a heuristic
function as an argument. Heuristics take two arguments: a state in the search problem (the main
argument), and the problem itself (for reference information). The nullHeuristic heuristic function
in search.py is a trivial example.

You can test your A* implementation on the original problem of finding a path through a maze to a
fixed position using the Manhattan distance heuristic (implemented already as manhattanHeuristic
in searchAgents.py).

python pacman.py -l bigMaze -z .5 -p SearchAgent -a fn=astar,heuristic=manhattanHeuristic

Question 5: Finding All the Corners with BFS - 3 pts

Our new search problem is to find the shortest path through the maze that visits all four corners.
Note that for some mazes like tinyCorners, the shortest path does not always go to the closest food
first! Hint: the shortest path through tinyCorners takes 28 steps.

Note: Make sure to complete Question 2 before working on Question 5, because Question 5 builds
upon your answer for Question 2.

Implement the CornersProblem search problem in searchAgents.py. You will need to choose a state
representation that encodes all the information necessary to detect whether all four corners have
been reached. Now, your search agent should solve:

python pacman.py -l tinyCorners -p SearchAgent -a fn=bfs,prob=CornersProblem
python pacman.py -l mediumCorners -p SearchAgent -a fn=bfs,prob=CornersProblem

5



Hint: The only parts of the game state you need to reference in your implementation are the starting
Pacman position and the location of the four corners.

Our implementation of breadthFirstSearch expands just under 2000 search nodes on mediumCorners.
However, heuristics (used with A* search) can reduce the amount of searching required.

Question 6: Finding All the Corners with A* - 3 pts

Note: Make sure to complete Question 4 before working on Question 6, because Question 6 builds
upon your answer for Question 4.

Implement a non-trivial, consistent heuristic for the CornersProblem in cornersHeuristic.

python pacman.py -l mediumCorners -p AStarCornersAgent -z 0.5

Admissibility vs. Consistency: Remember, heuristics are just functions that take search states and
return numbers that estimate the cost to a nearest goal. More effective heuristics will return values
closer to the actual goal costs. To be admissible, the heuristic values must be lower bounds on the
actual shortest path cost to the nearest goal (and non-negative). To be consistent, it must additionally
hold that if an action has cost c, then taking that action can only cause a drop in heuristic of at most
c.

Remember that admissibility isn’t enough to guarantee correctness in graph search – you need
the stronger condition of consistency. However, admissible heuristics are usually also consistent,
especially if they are derived from problem relaxations. Therefore it is usually easiest to start out by
brainstorming admissible heuristics. Once you have an admissible heuristic that works well, you
can check whether it is indeed consistent, too. The only way to guarantee consistency is with a
proof. However, inconsistency can often be detected by verifying that for each node you expand, its
successor nodes are equal or higher in in f-value. Moreover, if UCS and A* ever return paths of
different lengths, your heuristic is inconsistent. This stuff is tricky!

Non-Trivial Heuristics: The trivial heuristics are the ones that return zero everywhere (UCS)
and the heuristic which computes the true completion cost. The former won’t save you any time,
while the latter will timeout the autograder. You want a heuristic which reduces total compute time,
though for this assignment the autograder will only check node counts (aside from enforcing a
reasonable time limit).

Grading: Your heuristic must be a non-trivial non-negative consistent heuristic to receive any
points. Make sure that your heuristic returns 0 at every goal state and never returns a negative value.
Depending on how few nodes your heuristic expands, you’ll be graded:

Number of nodes expanded Grade
more than 2000 0/3

at most 2000 1/3
at most 1600 2/3
at most 1200 3/3

6



Remember: If your heuristic is inconsistent, you will receive no credit, so be careful!

Vocareum leaderboard: For some extra fun, when you submit to Vocareum, the number of nodes
your pacman agent expands in this question will be published to a classroom leaderboard!

Extra Credit Exploration: Pacman Explores Superfoods <> 0-2 pts!

Congrats on making it this far! If you feel called to dive a little deeper, then continue reading for an
extra-credit exploration and friendly competition. Otherwise, go ahead and submit :)

For most of his ghost-fighting life, Pacman has eaten a rather bland unbalanced diet of pellets and
occasional capsules. Then the other day, on suggestion from his doctor, Pacman went to Whole
Foods and saw some quinoa and chia seeds for the first time in his life. This inspired him to hop on
the “superfood” train and explore a more diverse diet!

Your mission then, should you choose to accept it, is to help Pacman find diverse food sources for a
more balanced diet. More specifically, there are now three food types and his doctor suggests he
should eat at least two of each type on a regular basis.

Setup: we added a new file superFoodSearch.py that has startercode similar to what is found in
Questions 5 and 6 for implementing the class SuperFoodSearchProblem and function superFood-
Heuristic. We also made changes to other files within the codebase. To integrate these changes,
please follow this flow:

1. Download the startercode from Vocareum, as before
2. Replace the search.py and searchAgents.py with the versions you‘ve worked on thus far
3. Append the following code snippets to the end of your searchAgents.py:

from superFoodSearch import SuperFoodSearchProblem, superFoodHeuristic
class AStarSuperFoodAgent(SearchAgent):
"A SearchAgent for SuperFoodSearchProblem using A* and your superFoodHeuristic"
def __init__(self):

self.searchFunction = lambda prob: search.aStarSearch(prob, superFoodHeuristic)
self.searchType = SuperFoodSearchProblem

SuperFood with BFS Search (+1 pt): Make sure to complete Question 2 before working on
this part. Implement the class SuperFoodSearchProblem within superFoodSearch.py. This search
problem finds paths to eat at least two of each type of food. Similar to question 5, implement
a suitable state space, goal state check, and successor function. You can test your code on the
following layouts:

python pacman.py -l tinySuperFood -p SearchAgent -a fn=bfs,prob=SuperFoodSearchProblem
python pacman.py -l mediumSuperFood -p SearchAgent -a fn=bfs,prob=SuperFoodSearchProblem

Note: Running the mediumSuperFood test could take up to 10 seconds or more depending on your
machine and implementation. But if it is taking more than a minute, something might be wrong!

7



You will receive one point if everything is implemented correctly, according to the autograder. If
you want to just test this BFS component of the bonus question, then run:

python3 autograder.py -q q7

SuperFood with A* Search (0-1 pts): Make sure to complete Question 4 before working on this
part. Implement the function superFoodHeuristic within superFoodSearch.py. You can test your
heuristic with the same layouts as above:

python pacman.py -l tinySuperFood -p AStarSuperFoodAgent
python pacman.py -l mediumSuperFood -p AStarSuperFoodAgent

With the autograder, you can also confirm that your heuristic is admissible and consistent:

python3 autograder.py -q q8

You’ll notice that this part is scored out of zero points. After the due date, we’ll look at all bonus
question submissions and let x := minimal # of expanded states for mediumSuperFood. Let
y := 10900, which is the baseline # of expanded states derived from one of our implementations of
BFS for the same layout. Then, your score for this part will be normalized to [0, 1], based on where
your # of expanded states is located on the interval [x, y].

Submit as per the instructions below. As in Question 6, your # of expanded states will be published
to the leaderboard for friendly competition!

Submission

Once you’re happy with your score that the autograder gives you, upload search.py, searchAgent.py,
and superFoodSearch.py (if you chose to do the bonus question) to Vocareum and submit. This will
run the same autograder and will publish your # of expanded nodes from Question 6 (as well as the
bonus question, if applicable) to the class leaderboard. You are welcome to submit as many times
as you‘d like before the due date!

8


	Introduction
	Question 1: Depth-First Search (DFS) - 3 pts
	Question 2: Breadth-First Search (BFS) - 3 pts
	Question 3: Uniform-Cost Search (UCS) - 3 pts
	Question 4: A* Search - 3 pts
	Question 5: Finding All the Corners with BFS - 3 pts
	Question 6: Finding All the Corners with A* - 3 pts
	Extra Credit Exploration: Pacman Explores Superfoods <> 0-2 pts!
	Submission

