
Homework 2 (revision 2)

CSCI 360 Spring 2022

This assignment covers RL, Logistic Regression and Machine Learning, Perceptrons, Neural Networks, Decision
Trees, and Bayes Nets and Hidden Markov Models. It is due on Friday, April 29, 11:59 PM PST.

Submission Instructions: Please submit your solutions on Gradescope. We recommend you type up your solutions
using LATEX but handwritten solutions are also fine. Make sure that you correctly assign pages to questions when
submitting to Gradescope, otherwise you will receive a 0 for unassigned questions.

DO NOT SUBMIT TO BLACKBOARD.

SUBMIT TO GRADESCOPE.
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1 Reinforcement Learning [13 pts]

Your robot vacuum cleaner has discovered that it gains rewards as it moves around and cleans up. In each state, it
has four possible actions, Go Left, Go Right, Slide or Climb. The Attic and the Basement are terminal states, with no
action possible from there.

Below you will find the robot’s sequence of actions in the first episode :

t st at st+1 rt

1 Room Go Right Kitchen 5
2 Kitchen Go Left Room 2
3 Room Go Right Room 2
4 Room Go Right Kitchen 5
5 Kitchen Climb Attic 10

1. (2 points) In model-based reinforcement learning, the transition ( T(s, a, s’) ) and reward ( R(s, a, s’) ) functions
are estimated first. Use the first episode (given above) to fill the following values:

(a) R(Kitchen, Go Left, Room) =

Solution: 2

(b) R(Room, Go Right, Room) =

Solution: 2

(c) T(Room, Go Right, Kitchen) =

Solution: 2/3 ( #(Room, Go Right, Kitchen) / #(Room, Go Right) )

(d) T(Room, Go Right, Room) =

Solution: 1/3

(e) T(Kitchen, Climb, Attic) =

Solution: 1

(f) T(Room, Slide, Basement) =

Solution: 0

2. (1 point) Now, consider the second episode :

t st at st+1 rt

1 Room Go Right Room 2
2 Room Go Right Kitchen 5
3 Kitchen Go Left Room 2
4 Room Slide Basement 1

After including these samples, which of the calculated values in part (a) will change? (Mention the new updated
value as well)
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Solution: T(Room, Go Right, Kitchen) = 3/5
T(Room, Go Right, Room) = 2/5
T(Room, Slide, Basement) = 1

3. (3 points) Now, onward to model-free learning. What are the following Q-values learned after ONLY the first
episode?
Assume that all Q-values initialized as 0. Update the Q value with the latest Q values at each t, using the equation
Q(s, a) = (1 − α) ∗ Q(s, a) + α ∗ [R(s, a, s′) + γ(maxa′ (Q(s′, a′))], where γ = 0.5, α = 0.5. Hint: at each t, you
should only be updating a single Q value (the one to which the sample applies).

(a) Q(Room, Go Right) =

Solution: 139/32

(b) Q(Kitchen, Go Left) =

Solution: 13/8

(c) Q(Kitchen, Climb) =

Solution: 5

Here’s a table to help you keep track of values:

t sample Q(Room,Go Right) Q(Room,Slide) Q(Kitchen,Go Left) Q(Kitchen,Climb)

1 [Room, Go Right, Kitchen, 5]

2 [Kitchen, Go Left, Room, 2]

3 [Room, Go Right, Room, 2]

4 [Room, Go Right, Kitchen, 5]

5 [Kitchen, Climb, Attic, 10]

Solution: Perform Q-value update for every sample in the first episode.
Q(s, a) = (1 − α) ∗ Q(s, a) + α ∗ [R(s, a, s′) + γ(maxa′ (Q(s′, a′))]

t sample Q(Room,Go Right) Q(Room,Slide) Q(Kitchen,Go Left) Q(Kitchen,Climb)
1 [Room, Go Right, Kitchen, 5] 5/2 0 0 0
2 [Kitchen, Go Left, Room, 2] 5/2 0 13/8 0
3 [Room, Go Right, Room, 2] 23/8 0 13/8 0
4 [Room, Go Right, Kitchen, 5] 139/32 0 13/8 0
5 [Kitchen, Climb, Attic, 10] 139/32 0 13/8 5

1. Q(Room,GoRight) = 0 + (1/2) * [ 5 + (1/2)*0 ] = 5/2
2. Q(Kitchen,GoLeft) = 0 + (1/2) * [ 2 + (1/2)*max(5/2,0) ] = 13/8
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3. Q(Room,GoRight) = (1/2)5/2 + (1/2) * [ 2 + (1/2)*max(5/2,0) ] = 23/8
4. Q(Room,GoRight) = (1/2)23/8 + (1/2) * [ 5 + (1/2)*max(13/8,0) ] = 139/32
5. Q(Kitchen,Climb) = 0 + (1/2) * [ 10 + (1/2)*0 ] = 5

4. (1 point) Suppose after numerous episodes, we end up with the following Q-values:
Q(Room, Go Right) = 5.1
Q(Room, Slide) = 4.7
Q(Kitchen, Go Left) = 3.4
Q(Kitchen, Climb) = 7.5

Give the optimal policies :
π(Room) =

Solution: Go Right

π(Kitchen) =

Solution: Climb

5. (1 point) Will adding the sample [ Room, Slide, Basement, 1 ] change the optimal policy in 1.4 (assume all Q
values in the Basement are 0)? If yes, what will the updated policy be? If no, justify.

Solution: No change to the optimal policy.
Q(Room, Slide) = (1/2)*(4.7) + (1/2)*[ 1 + (1/2)*max(0) ] = 2.85
New Q value Q(Room, Slide) = 2.85 which is still lesser than Q(Room, Go Right). The optimal policy will
still remain to Go Right when in the Room state.

6. (5 points) Your robot enters a championship with three other participants. Each of them have learnt an optimal
policy as shown below, with their own, unspecified reward functions. (i), (ii), (iii) and (iv) are the policies of the
four different robots.
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Only the transitions to the Attic and Basement have rewards (which can be negative or positive). Transitions to
the Kitchen, Room and Patio have no rewards. When a policy takes an action that goes into a wall, the agent will
just stay in the same state.

Suppose we use a feature-based representation of the states. The value of each state is V(x, y) = wT f (x, y). f (x, y)
is a feature function which maps the grid coordinates (x, y) to a vector of features and w is a weight vector that
parameterizes the value function.

The following few questions consider various possible feature functions f (x, y). Assume the weight vector w is
not allowed to be all 0’s. E.g. in 1 dimension, it cannot be 0. In 2 dimensions, at least one of the entries of w
must be non-zero.
(a) Let (x0,y0) be the attic’s location. If the x-distance to the attic is the only feature used, i.e, f(x,y) = | x – x0
|, which of the above policies could be extracted from a value function that is representable using this feature
function? Choose all that apply:
(i) (ii) (iii) (iv)

Solution: (i), (iii), (iv)
(ii) is trying to both increase and decrease the x-distance to the attic at the same time.

(b) Let (x1,y1) be the basement’s location. If we use two features : the x-distance to the basement and the y-
distance to the basement. i.e, f(x,y) = ( | x – x1 | , | y – y1 | ), which of the above policies could be extracted
from a value function that is representable using this feature function? Choose all that apply:
(i) (ii) (iii) (iv)

Solution: (ii), (iii)
(ii) is decreasing the x-distance and increasing the y-distance to the basement.
(iii) decreases the x-distance and increases the y-distance
(i) and (iv) try to increase and decrease the x-distance to the attic at the same time.
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(c) If the Euclidean distance to the attic is the only feature used, which of the above policies could be extracted
from a value function that is representable using this feature function? Choose all that apply:
(i) (ii) (iii) (iv)

Solution: (iii), (iv)
(i) decreases distance in PATIO and ROOM but doesn’t decrease distance at KITCHEN. (ii) increases
and decreases the shortest distance to the attic.
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2 Logistic Regression and Machine Learning [13 pts]

1. (6 points) Maximum Likelihood Estimation: As seen in lectures 8 and 9 and in the discussion for lecture 9, we
maximize the likelihood (or log-likelihood) of some function in machine learning to obtain the best estimate of
the parameters of our hypothesis (where the hypothesis class is the class of neural networks, logistic regression
classifiers, etc.) to classify the given training datapoints. Here, we will practice performing Maximum Likelihood
Estimation (MLE) again, on a simpler distribution. If you haven’t yet, we highly recommend you watch the
discussion for lecture 9 (Lecture on 3/30/22) and read the handout before attempting this problem.

Assume you have N independent, identically drawn (iid) outcomes, y(1), ..., y(N) from flipping a (possibly biased)
coin N times. A coin flip results in either Heads or Tails. We would like to estimate the parameter θ, which
represents the true chance that the coin lands on Heads. The likelihood of our sample given our estimate θ is then:

P(y(1)...y(N); θ) = ΠN
i=1P(y(i); θ) (from iid assumption)

Thus, we would like to maximize this probability over all possible θ to obtain the best estimate.

max
θ
ΠN

i=1P(y(i); θ) =

max
θ
L(θ)

where L(θ) = ΠN
i=1P(y(i); θ) is called the “likelihood function.” The process of maximizing this function is called

Maximum Likelihood Estimation (MLE).
(a) Explicitly write out the probability that coin y(i) turns out to be Heads given our parameter θ, P(y(i) = H; θ):

Solution: P(y(i) = H; θ) = θ

(b) Explicitly write out the probability that coin y(i) turns out to be Tails given our parameter θ, P(y(i) = T ; θ):

Solution: P(y(i) = T ; θ) = 1 − θ

(c) Now, assume that we have observed M ≤ N Heads (and therefore N − M ≥ 0 Tails). Explicitly write out the
likelihood L(θ) of these observations as a function expressed in terms of θ, M, and N.

Solution: L(θ) = θM(1 − θ)N−M

(d) Note that this function is simple enough to solve for directly! Remember from calculus that you can find the
maximum of a concave function by directly taking the derivative and solving for 0. What is the derivative of
L(θ) with respect to the parameters θ ( ∂

∂θ
L(θ))? Assume M = N −1, i.e. that you have only 1 observed tail.

∂
∂θ
L(θ) =

Solution: ∂
∂θ
θN−1(1 − θ) = ∂

∂θ
θN−1 − ∂

∂θ
NθN = (N − 1)θN−2 − NθN−1 = θN−2(N − 1 − Nθ)

(e) Now, set ∂
∂θ
L(θ) = 0 and solve for θ! What’s the MLE estimate of θ? Intuitively, what does this estimate for

θ mean?
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Solution:

θN−2(N − 1 − Nθ) = 0
N − 1 − Nθ = 0

θ =
N − 1

N

This is essentially counting the number of heads and dividing by the total number of flips.

(f) With many machine learning hypotheses classes, the objective does not have a closed form solution. For
example, in classification we have samples (x(1), y(1)), ..., (xN , y(N)) and we are trying to maximize the prob-
ability of the input x(1), ..., x(N) having the observed labels y(1), ..., y(N) given our parameters w. In logistic
regression, this is P(y(i)|x(i); w) = ϕ(w · x(i)) where ϕ represents the sigmoid activation function, and the
likelihood function L(θ) cannot be directly maximized by taking the derivative and setting it equal to 0 as
attempting to do so results in an unsolvable equation.
That’s why we have to perform gradient ascent to maximize the objective instead. Let’s pretend that the
same is true for this Heads/Tails coin problem. What is the update rule for our parameter θ (instead of the
w above) if we are performing gradient ascent (building on your answer from (d))? Express your answer in
terms of θ, an arbitrary learning rate α, and N.

Solution: θ ← θ + α ∂
∂θ
L(θ) = θ + αθN−2(N − 1 − Nθ)

2. (7 points) Gradient Ascent for Logistic Regression: In this question, you will perform gradient ascent updates
for a few iterations with a logistic regression classifier on the maximum likelihood objective. If you haven’t yet,
we recommend you watch the lecture for discussion 9 and the gradient ascent video tutorial posted on blackboard
before attempting this problem.

Remember that the objective of classification is to maximize the likelihood of the training data, i.e. maximize
the probability of predicting the correct label for all of the datapoints in the training set. In logistic regression for
binary classification, we have a linear classifier parameterized by a vector w, such that a prediction is obtained
by taking its dot product with the input x and sending that value through a sigmoid function to bound the output
between (0, 1). This looks like ϕ(w · x) = 1

1+e−
∑d

i=1 wi xi
when we have d features. We arbitrarily set P(y = 1|x; w) =

ϕ(w · x), and P(y = 0|x; w) = 1 − ϕ(w · x) for the two labels 0 and 1.

Assuming N training points, the objective for logistic regression is derived as follows:

max
w
ΠN

i=1P(y(i)|x(i); w) = max
w
ΠN

i=1ϕ(w · x
(i))y(i) [

1 − ϕ(w · x(i))
]1−y(i)

We then take the log of this objective so that we can get a sum for easier gradient computation. Note that if we
take the log of this function, the maximizing w still doesn’t change.

max
w

log
(
ΠN

i=1ϕ(w · x
(i))y(i) [

1 − ϕ(w · x(i))
]1−y(i))

= max
w

N∑
i=1

y(i) log ϕ(w · x(i)) + (1 − y(i)) log(1 − ϕ(w · x(i))) (1)
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We maximize this function through gradient ascent with respect to the weights w. The gradient is given by

∇w

N∑
i=1

y(i) log ϕ(w · x(i)) + (1 − y(i)) log(1 − ϕ(w · x(i)))

=

N∑
i=1

∇wy(i) log ϕ(w · x(i)) + ∇w(1 − y(i)) log(1 − ϕ(w · x(i))) derivative of sums

=

[
y(i)

ϕ(w · x(i))
−

1 − y(i)

1 − ϕ(w · x(i))

]
∇wϕ(w · x(i)) using derivative of log

=

[
y(i)

ϕ(w · x(i))
−

1 − y(i)

1 − ϕ(w · x(i))

]
ϕ(w · x(i))(1 − ϕ(w · x(i))∇ww · x(i) using ∇ϕ(z) = ϕ(z)(1 − ϕ(z))

=

[
y(i)

ϕ(w · x(i))
−

1 − y(i)

1 − ϕ(w · x(i))

]
ϕ(w · x(i))(1 − ϕ(w · x(i))x(i) using ∇ww · x = x just like in 1d calculus

=

[
y(i) − ϕ(w · x)

ϕ(w · x(i))(1 − ϕ(w · x(i)))

]
ϕ(w · x(i))(1 − ϕ(w · x(i))x(i) algebraic manipulation

=

N∑
i=1

[
y(i) − ϕ(w · x(i))

]
x(i)

Note that the gradient is a vector of dimension d as we are taking a weighted sum of the datapoint vectors x.

For the following parts, assume that we have 2 datapoints in our training set (x(1) = [1 1]T , y(1) = 1) and (x(2) =

[0 0.5]T , y(2) = 0). Assume the initial weights are w = [0.5 1.0]T , and that our learning rate α = 5. Give exact
decimal answers rounded to two decimal points. Feel free to do this problem either by hand (with a calculator) or
by writing your own code to calculate this.

(a) What are our initial predictions for the probability of each datapoint (x, y))? What is the log likelihood of our
training set (Eq.1)? Use the natural log.
P(y(1)|x(1); w) =

Solution: ϕ(0.5 + 1.0) = 0.82

P(y(2)|x(2); w) =

Solution: 1 − ϕ(0 + 0.5) = 0.38

Log Likelihood =

Solution: log ϕ(0.5 + 1.0) + log ϕ(1 − ϕ(0 + 0.5)) = −1.18

(b) Now, plot the two datapoints and draw a line for the “decision boundary” on a graph. The decision boundary
is obtained where the probabilities of predicting either class is equal, or where P(y|x; w) = 0.5. Hint: for
the decision boundary, set P(y|x; w) = 0.5 and solve for x2 (the second dimension of x) as a function of
w1,w2, x1. Then, plot that line on your graph. Make the graph bounds [−1, 1] for both dimensions.
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Solution:

(c) Perform one update of gradient ascent, what is the new w? What are the new predicted probabilities of our
datapoints and the new log likelihood (natural log)?
w =

Solution: [1.41, 0.36]

P(y(1)|x(1); w) =

Solution: 0.85

P(y(2)|x(2); w) =

Solution: 0.46

Log Likelihood =

Solution: −0.94

(d) Draw the same graph as in part (b), but using the new weights.

Solution:

(e) Perform one more update of gradient ascent, what is the new w? What are the new predictions and log
likelihood (natural log)?
w =

Solution: [2.14, -0.28]

P(y(1)|x(1); w) =
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Solution: 0.86

P(y(2)|x(2); w) =

Solution: 0.53

Log Likelihood =

Solution: −0.77

(f) Draw the graph again with your new weights.

Solution:

(g) Briefly describe how gradient ascent moved the decision boundary, changed the log likelihood, and updated
the classification probabilities during the course of training.

Solution: Gradient ascent causes the decision boundary to be moved in between the two datapoints,
thus increasing the classification probabilities and also increasing the log likelihood throughout training.
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3 Decision Trees [13 pts]

Covid cases are finally on a downward curve! As we all take measures to stay safe and masked-up whenever necessary,
you’ve been collecting data from your friends and family to ensure their well-being.

Data collected includes covid symptoms as features and whether the person tested positive or not as the target. The
symptoms are Headache, Fever and Cough where each attribute can have two values : Yes/No.
Given this information, answer 1 and 2 :

1. (1 point) How many distinct decision trees can be constructed?

Solution: 256 ( 2ˆ(2ˆ3) )
3 boolean attributes

2. (1 point) How many decision stump models can be constructed?

Solution: 12 ( 4*3 )
3 boolean attributes

Now consider the samples shown below to answer 3-7

Headache Fever Cough Tested Positive
No Yes No No
Yes No Yes Yes
No No No No
No Yes Yes Yes
Yes Yes Yes Yes
Yes No No Yes
Yes Yes No No
No No Yes No

3. (3 points) While constructing a decision tree to predict the target label, what is the information gain for each of
the attributes assuming we’re constructing the root node?

(a) IG ( Headache ) =

Solution:
Headache Target=Yes Target=No Total

No 1 3 4
Yes 3 1 4

IG ( Headache) = I(0.5,0.5) - remainder(headache)
remainder(headache) = (4/8)*I(1/4,3/4) + (4/8)*I(3/4,1/4) = 2*0.5* [ (-1/4)log(1/4) + (-3/4)log(3/4) ] =
0.8112
IG ( Headache) =1 - 0.8112 = 0.1888

(b) IG ( Fever ) =
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Solution:
Fever Target=Yes Target=No Total

No 2 2 4
Yes 2 2 4

IG(Fever) = I(0.5,0.5) - remainder(Fever)
remainder(Fever) = (4/8)*I(2/4,2/4) + (4/8)*I(2/4,2/4)= 2*0.5* 2* (-1/2)log(1/2) =1
IG (Fever) =1-1 = 0

(c) IG ( Cough ) =

Solution:
Cough Target=Yes Target=No Total

No 1 3 4
Yes 3 1 4

IG(Cough) = I(0.5,0.5) - remainder(Cough) = 0.1888

4. (1 point) Based on the information gain calculated above, which of the following attributes could be at the root
of the resulting tree? Select all possible answers.

(i) Headache

(ii) Fever

(iii) Cough

Solution: (i) Headache and (ii) Cough
(maximal information gain at the root)

5. (1 point) In the final decision tree, how many edges does the longest path have (following the standard algorithm
in Lec9 slide 47, with any arbitrary function to choose the split feature)? Select all possible answers.

(i) 1

(ii) 2

(iii) 3

(iv) 4

Solution: (iii) 3. Regardless of the choice of the feature at the root, the resulting tree needs to consider all
3 features in a path, so there are 3 edges in that path.
Split on Headache at the root.
For Headache = Yes :

Fever Target=Yes Target=No Total
No 2 0 2
Yes 1 1 2

Cough Target=Yes Target=No Total
No 1 2 2
Yes 2 0 2

Suppose the node is split on Fever, for Headache=Yes and Fever=Yes, we still need to know Cough value
to decide the final target. Similarly, if the node is split on Cough, Headache=Yes and Cough=No are not
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sufficient to decide the final target (Fever value is needed).
Thus the longest path will need to consider all the features.

6. (1 point) State whether True or False : If a person has both fever and cough, we cannot always say they will test
positive for Covid (solely based on the final decision tree).

Solution: False. Fever=Yes and Cough=Yes always results in TestedPositive = Yes.
No matter the way we split these features, all of the training data samples with Fever=Yes and Cough=Yes
point to TestedPositive=Yes.

7. (1 point) An additional feature "Temperature" is added to the dataset. It contains numerical values denoting the
body temperature of the person in Fahrenheit.

(a) Is it still possible to construct a decision tree on the new dataset? ( Yes / No )

(b) If No, explain why. If Yes, how would the data be split?

Solution: (a) Yes
(b) Since temp is a continuous feature, split on the median value of the all the examples.
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8. (4 points) The below data includes different features of animals to classify whether they are mammals or not.

From this data, the following decision tree is constructed :

(a) What would the above tree classify humans as? (We are four-legged warm-blooded animals that can give
birth and don’t hibernate)

Solution: Non-mammals

(b) What is the reason for the above classification?

Solution: Overfitting

(c) Briefly describe why the above tree has overfit the dataset.

Solution: There are lack of representative instances to model the tree on.
Incorrect answer : noise (there aren’t noisy samples in the dataset)

(d) Describe any one way to reduce overfitting in decision trees.

Solution: Pruning (pre-pruning, post-pruning, limit the hypothesis space, limit max-depth of trees) /
Cross validation / Chance cut-off
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4 Neural Networks [14 pts]

1. (10 points) We will be looking at the backpropagation algorithm to calculate the optimal values of the weights. It
allows for efficiently computing the gradients of neural network hidden layer weights with respect to the objective
function.
Consider the neural network below with 2 input nodes, two neurons in the hidden layer and one output. Hidden
layer has ReLU activation functions and the output has a sigmoid activation function. This network can be used
for classification. Since the final output is a probability value between 0 and 1, values >=0.5 will be assigned
label 1 and values <0.5 will be assigned label 0. We will use the example below to show how backprop works:

Recall the gradient of the log of the likelihood function we calculated in Q2.2 for logistic regression:

∇w logL(w) = ∇w

N∑
i=1

y(i) log ϕ(w · x(i)) + (1 − y(i)) log(1 − ϕ(w · x(i)))

=

N∑
i=1

[
y(i) − ϕ(w · x(i))

]
x(i) (2)

Notice that the last layer of this neural network, represented by w5 and w6, is essentially performing logistic

regression over the input features h1 and h2. We can represent w5 and w6 with a weight vector w =
[
w5
w6

]
, and

inputs h1 and h2 with a feature vector h =
[
h1
h2

]
. For this neural network with output a and label y, the derivative

of the max likelihood function with respect to w5 and w6 is then the first and second components of

N∑
i=1

[
y(i) − ϕ(w · h(i))

]
h(i)

Written more clearly,

∂

∂w5
logL(w1, ...,w6) =

 N∑
i=1

[
y(i) − ϕ(w · h(i))

]
h(i)


1

where the subscript denotes the first element of the vector

=

N∑
i=1

[
y(i) − ϕ(w · h(i))

]
h(i)

1

=

N∑
i=1

[
y(i) − ϕ(w5h(i)

1 + w6h(i)
2 )
]

h(i)
1

Thus, we can update w5 through gradient ascent to maximize the log likelihood of the data by updating

w5 ← w5 + α
[
y − ϕ(w5h1 + w6h2)

]
h1
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(a) Derive ∂
∂w6

logL(w1, ...,w6) as a function of y(i),w5,w6, h
(i)
1 , h

(i)
2 .

Solution: ∂
∂w6

logL(w1, ...,w6) =
∑N

i=1

[
y(i) − ϕ(w5h(i)

1 + w6h(i)
2 )
]

h(i)
2

(b) Now, let’s consider how to update the weights in the first layer. Recall the chain rule: for functions f and g,
∂
∂x f (g(x)) = ∂ f

∂g
∂g
∂x .

As an example, consider f (x) = w1 ∗ g(x), g(x) = w2 ∗ x. Then, ∂ f (g(x))
∂x =

∂ f
∂g
∂g
∂x = w1 ∗ w2.

In the first layer, we have input variables x1 and x2. We can represent w1, w2, w3 and w4 with a weight matrix

W =

[
w1 w3
w2 w4

]
, and inputs x1 and x2 with a vector x =

[
x1
x2

]
. Then the hidden layer values are the first and

second components of ReLU(Wx(i)), i.e.

h(i)
1 = [ReLU(Wx(i))]1

h(i)
2 = [ReLU(Wx(i))]2

Find the derivative of the log likelihood L with respect to w1, using the chain rule for differentiation provided
to you above. (First differentiate with respect to the ReLU function (see class slides) in h and then with
respect to w1). Here is a step by step breakdown to help you.
(i) First, write ∂

w1
logL(w1, ...,w6) in terms of the product of two partial derivatives. The first term should

be a partial with respect to one of the h and the second should be a partial with respect to w1.
(ii) Now, compute the first partial. Use the gradient derivation given above for (∇w logL(w), Eq. 2) and

notice some symmetry to do this part more easily.
(iii) Note that the ReLU function has two cases. Take the derivative of each case separately.
(iv) Now, put it all together using the chain rule from the first step. You will have two cases for the final

gradient.
(v) You now know how to update the weights of a 2-layer ReLU neural network for binary classification!

This derivation forms the backbone of backpropagation, which is used to efficiently update neural net-
work parameters on basically all neural networks deployed right now (Tesla’s self-driving cars, Siri voice
understanding, Google’s text autocomplete, etc.).

Solution: ∂
∂w1

logL(w1, ...,w6) = ∂L

∂h(i)
1
∗
∂h(i)

1
∂w1

∂L

∂h1
=
∂

∂h1

N∑
i=1

y(i) log ϕ(w5h(i)
1 + w6h(i)

2 ) + (1 − y(i)) log(1 − ϕ(w5h(i)
1 + w6h(i)

2 ))

=

N∑
i=1

[y(i) − ϕ(w5h(i)
1 + w6h(i)

2 )] ∗ w5

h(i)
1 = ReLU(w1x(i)

1 + w3x(i)
2 )

∂

∂w1
h(i)

1 =

x(i)
1 if h(i)

1 >= 0
0 otherwise

=⇒
∂

∂w1
L =


∑N

i=1[y(i) − ϕ(w5h(i)
1 + w6h(i)

2 )] ∗ w5x(i)
1 if h(i)

1 >= 0
0 otherwise

(c) Considering N = 2 (number of input variables), perform forward propagation using the values for biases and
weights given in the figure. Consider x1 = 2 and x2 = 1 and calculate the numerical value of the output a.
Don’t forget to add the biases:
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Solution: 0.973

(d) Consider the same 2-layer neural network given initially but with N input nodes instead of just two inputs.
Answer the questions below given only a single training example X = [x1, x2, ...xN], weights w1

i j, w2
j1, output

a and actual label y. (Note that i takes values from 1 to N, i.e. input size, whereas j takes the values 1,2 only
i.e., the number of neurons in hidden layer).

Derive an expression for the output a in terms of the inputs and weights given in the initial figure, i.e, w1
i j,

w2
j1 and xi. Use ϕ to denote the sigmoid function. Clearly show the value of each hidden neuron and perform

forward propagation step-by-step.

Solution: input : x1, x2, ...xN

weight 1 : w1
i j

weight 2 : w2
j1

Input to the hidden layer =
∑N

i=1 w1
i jxi

h j = ReLU(
∑N

i=1 w1
i jxi)

This hidden layer value is the input to the output layer
a = ϕ(

∑2
j=1 w2

j1h j)
a = ϕ(

∑2
j=1 w2

j1 ∗ ReLU(
∑N

i=1 w1
i jxi))

(e) Derive the equation for the weight update for the weight matrix entries w1
i j from (d). Assume that the actual

label for [x1, x2, .., xN] is y and that we are using maximum likelihood estimation. Follow a similar procedure
as to part (b) by using the chain rule to derive the gradient with respect to w1

i j.
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Solution: First differentiate wrt h j and then wrt w1
i j to find the gradient wrt w1

i j
∂
∂w1

i j
L = ∂

∂h j
L ∗ ∂

∂h j
w1

i j
∂
∂h j

L = [y − ϕ(
∑2

j=1 w2
j1h j)]w2

j1

∂
∂h j

w1
i j =

xi if h j >= 0
0 otherwise

∂
∂w1

i j
L =

[y - ϕ(
∑2

j=1 w2
j1h j)]w2

j1xi if h j >= 0
0 otherwise

2. (2 points) Just as we use a coordinate plane to represent a graph with two variables (X and Y), we can represent a
function with three variables on a two-dimensional plane using a contour plot. The graph will contain a number of
contour lines with each line having a constant value on a third variable. Similar to a coordinate plane, the vertical
and horizontal axis represent, individually, an independent variable. It is commonly used to show how a value Z
changes as a function of two variables, X and Y.

Below is a contour plot showing three different gradient ascent algorithms being run until they reach the same
maxima: batch gradient ascent, mini-batch gradient ascent and stochastic gradient ascent.

Indicate which color - blue, green, purple - corresponds to which form of gradient ascent, briefly explain why
for each choice. Assume that there are N training points, a batch size of B for mini-batch gradient ascent, and
1 << B << N.

Solution:

• Blue - Batch Gradient Descent. This is the least noisy line as we are taking gradient steps computed
over the full dataset.

• Green - Mini-Batch Gradient Descent. This is somewhat noisy as we are using batches to compute the
gradient.

• Purple - Stochastic Gradient Descent. This is very noisy as we are taking one step at a time.

3. (2 points) In class we learned about the tradeoffs in bias and variance in different ML models. How would the bias
and variance of a neural network change when changing the following hyperparameters of the network? Briefly
explain why.

(a) Increasing the number of layers and neurons in each layer.
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Solution: Decreases bias and increases variance. More layers and neurons in each layer decreases
training error and fits the training data better, decreasing bias and consequently increasing variance.

(b) Increasing number of examples in the training set.

Solution: Decreases variance. Exposing the model to more training samples helps lower the variance
as it helps reduce overfitting.

(c) Adding regularization by limiting the values of the weights.

Solution: Increases bias and decreases variance. Regularization reduces the variance of the model by
simplifying it and consequently increasing bias.
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5 Bayes Nets [14 pts]

1. (2 points) Given two 6-sided dice D1 and D2 to roll, answer the following questions.

(a) Let E be the event where sum of the values on D1 and D2 sum up to 5. What is the probability of occurrence
of event E, i.e P(E)

Solution: P(E) = 4/36 = 1/9 {(2, 3) (3, 2) (1, 4) (4, 1)}

(b) If F is an event of observing value on D2 to be 4, what is the probability of occurrence of event E given F, i.e.
P(E | F)

Solution: 1/36

2. (2 points) Let X, Y be two independent random variables with domain {1, 2, 3}. Given the below few values for
a joint distribution and the value P(Y=3) = 1/2, fill in the remaining values.

P(X=1, Y=1)=3/32 P(X=1, Y=2)=1/32 P(X=1, Y=3)=
P(X=2, Y=1)=3/48 P(X=2, Y=2)=1/48 P(X=2, Y=3)=
P(X=3, Y=1)= P(X=3, Y=2)= P(X=3, Y=3)=

Solution: Since, the given variables are independent, we know P(X,Y) = P(X)(Y).
P(X = 1,Y = 1)/P(X = 1,Y = 2) = P(Y = 1)/P(Y = 2) = 3
P(X = 1,Y = 1)/P(X = 2,Y = 1) = P(X = 1)/(X = 2) = 3/2
P(Y = 1) + P(Y = 2) + P(Y = 3) = 1
4P(Y = 2) + 1/2 = 1
P(Y = 2) = 1/8
P(Y = 1) = 3/8
P(X = 1) = 3/32 ∗ 1/P(Y = 1) = 1/4
P(X = 2) = 3/48 ∗ 1/P(Y = 1) = 1/6
P(X = 3) = 1 − 1/4 − 1/6 = 7/12

P(X = 1,Y = 3) = 1/8, P(X = 2,Y = 3) = 1/12,
P(X = 3,Y = 1) = 7/32, P(X = 3,Y = 2) = 7/96,
P(X = 3,Y = 3) = 7/24

3. (2 points) Suppose that there is a 1 in 100 chance that a plane crashes. Given the probability that a pilot is sleep-
deprived when the plane crashes is 0.7 and the probability they’re sleep-deprived is 0.1 when it doesn’t crash. if
the pilot is sleep-deprived, what is the probability that the plane crashes?

Solution: 0.039
Let the event that pilot crashes be represented by C and the event pilot is sleep deprived be S, We are given
the below values:
P(+c) = 0.01
P(+s| + c) = 0.7
P(+s| − c) = 0.1
P(+c| + s) = P(+s| + c)P(+c)/P(+s)
We know, P(+s) = P(+s| + c) ∗ P(+c) + P(+s| − c) ∗ P(−c)
P(+s) = 0.176
P(+c| + s) = (0.7 ∗ 0.01)/(0.176) = 0.039

4. (2 points) Given the following Bayesian Network with variables A, B, C, D that are of boolean values, What is
the probability of D being true given A is true?
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A P(A)
+ 0.25
- 0.75

B A P(B | A)
+ + 0.1
- + 0.9
+ - 0.4
- - 0.6

C A P(C | A)
+ + 0.2
- + 0.8
+ - 0.3
- - 0.7

D B C P(D | B, C)
+ + + 0.1
- + + 0.9
+ + - 0.25
- + - 0.75
+ - + 0.3
- - + 0.7
+ - - 0.2
- - - 0.8

Solution: 0.22
P(+d| + a) = P(+d,+a)/P(+a)
P(+d,+a) =

∑
b
∑

c P(+d, b, c,+a) = P(+d,+a,+b,+c)+P(+d,+a,+b,−c)+P(+d,+a,−b,+c)+P(+d,+a,−b,−c)
P(+d,+a,+b,+c) = P(+a) ∗ P(+b| + a) ∗ P(+c| + a) ∗ P(+d| + b,+c) = 0.25 ∗ 0.1 ∗ 0.2 ∗ 0.1
Similarly, P(+d,+a,+b,−c) = 0.25 ∗ 0.1 ∗ 0.8 ∗ 0.25,
P(+d,+a,−b,+c) = 0.25 ∗ 0.9 ∗ 0.2 ∗ 0.3,
P(+d,+a,−b,−c) = 0.25 ∗ 0.9 ∗ 0.8 ∗ 0.2
P(+d,+a) = 0.25 ∗ 0.22
P(+d| + a) = P(+d,+a)/P(+a) = 0.22

5. (2 points) Given the below Bayesian Network, which of the following assumptions of (conditional) independence
are valid?

(a) D y A|B

Solution: true

(b) A y G
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Solution: true

(c) A y G|F

Solution: false

(d) A y E|B, F

Solution: false

6. (4 points) You’re performing variable elimination for HW2 on a Bayes Net with 5 variables: A, B, C, D, E.
Suddenly, your dog comes along and eats your homework! You have now lost the original structure of the Bayes
net, but fortunately, you remember where you left off. You have just finished joining over the variable C, and but
you have not yet eliminated C nor joined over any other variable.

You currently have four factors (meaning, either normalized or unnormalized probabilities) so far, the first one
involving just (A), the second involving just (B), the third involving (B, D), and the fourth involving (A, B, C, D,
E). In each factor, you don’t remember which variables are conditioned on, or if at all.

HINT: When you are joining over C, you know that there must be at least one term within the factor that looks
like P(∗|C, ∗), and another like P(C, ∗|∗) (otherwise we won’t be able to sum C out). Use this fact and what’s in
the other factors, to figure out which nodes MUST have certain parents and which nodes CANNOT.

(a) What’s the smallest number of edges possible in the original Bayes Net? List it out and then draw an example.

A

B

C

D

E

Solution: 5. Since we haven’t summed over any variable yet, each factor tells which variables must
have edges with each other. There’s a factor involving just A and one involving just B so they must not
have any parents (the two factors are P(A) and P(B)). The one involving (B, D) then must have B as a
parent of D since B has no parents. In the last one, since we’re joining over C, the factor must have a
term like P(∗|C), and another one like P(C, ∗|∗) (otherwise the join and summation wouldn’t get rid of
C). Since nothing else involves E, then C must be a parent of E for this to be true so the factor could
be P(E|C). Finally, this last factor involves A, B,D. D can’t have any other parent than B otherwise
the third factor (B, D) would have to have another variable in it. So then D must point to C or E. A
and B both can’t have more parents, so to be included in this factor they can point to either C or E.
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A

B

C

D

E

(b) What’s the largest number of edges possible in the original Bayes Net? List it out and then draw an example.

A

B

C

D

E

Solution: 8. Similar to the logic from above, we know that A and B must be parents, and that D
depends on B. The last factor can change to have more edges though. The factor must have a term
like P(∗|C), along with other possible terms involving A,B,C,D,and E. We know that D can’t have any
more parents, because if it did then the factor involving (B, D) would also have another variable for
D’s parent. Therefore, just like before, C must be a parent of E, but neither C nor E can be parents
of D. However, we can make A, B, D parents of both C/E since this doesn’t violate any constraints.
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A

B

C

D

E
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6 Perceptrons [14 pts]

1. (4 points) Answer the following questions
(a) Is a single perceptron is capable of computing an XNOR function?

i. True
ii.False

Solution: False

(b) Is the perceptron algorithm guaranteed to converge within a finite number of training steps for a linearly
separable dataset?
i. True
ii.False

Solution: True

(c) Is the perceptron algorithm guaranteed to find a max margin separating hyperplane for a linearly separable
dataset?
i. True
ii.False

Solution: False

(d) Will the results of a perceptron algorithm will always converge? Give a reason for your answer.

Solution: A. False – When the data is not linearly separable.

(e) If we run the perceptron algorithm with no bias on ‘d’ dimensional data, the decision boundary produced will
be a hyperplane passing through the origin Rd, even when it doesn’t converge.
i. True
ii.False

Solution: True

(f) Steve wants to use a perceptron for his binary data x(i) with labels y(i) ∈ {+1,−1}. Steve observed that his
data was not linearly separable and hence decided to adopt an approach where he would train with data
z(i) = (x(i), y(i)) and labels as y(i). Is this new approach successful in changing it into a linearly separable
dataset? Why or why not?

Solution: Yes, because there is a new dimension in which all points in one class are above the origin
and all points in the other class are below the origin (using the +1, -1 labels). A separating hyperplane
exists by directly cutting through the origin with last dimension = 0.

(g) Suppose we have a linearly separable four-class dataset with classes and we run the perceptron algorithm,
with initial weights w0

1,w
0
2,w

0
3,w

0
4 (superscript denotes the number of updates, subscript denotes each class’

vector), until convergence. Let |D| be the number of data points and t be the number of updates to the weights
before convergence. If x = w0

1 + w0
2 + w0

3 + w0
4 then what is the sum of wt

1 + wt
2 + wt

3 + wt
4?

Solution: x. Each time we classify incorrectly, we add f (x) to one weight subtract f (x) from another.
If we classify correctly, we make no change to the weights.

2. (4 points) Multi-Class Perceptron
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(a) Suppose we have a multiclass perceptron with classes A, B, C and initial weights set to wA = [1, 3]T ,
wB = [2,−1]T , and wC = [−3,−2]T . Write the resulting weight vectors after training on the following data-
point.

wA = ?
wB = ?
wC= ?

Solution: The predicted label is argmaxy∈(A,B,C)wT
y x which is A.

wT
a x = 1 ∗ 2 + 3 ∗ 2 = 8 is greater than both wT

Bx = 2 ∗ 2 − 1 ∗ 2 = 2 and wT
Cx = −3 ∗ 2 − 2 ∗ 2 = −10.

Therefore the weights are not updated, so the weights are the same as the initial ones.
wA = [1, 3]T

wB = [2,−1]T

wC = [−3,−2]T

(b) Suppose we have a different multiclass perceptron with classes A, B, C and initial weights set to Wa = [1, 3],
Wb = [2,-1] and Wc = [-3,-2]. Write the vectors Wa, Wb, Wc after training on the following 2-dimensional
training data once.

wA = ?
wB = ?
wC= ?

Solution: The predicted label is C, since since wT
Cx = 11 is greater than both wT

Ax = 1,wT
Bx = −12.

Since the predicted label C is not equal to the correct label B, the weights are updated by subtracting the
features from the weights of the predicted label and by adding to the weights of the correct labels.
wC = wC − [−5, 2]T = [2,−4]T

wB = wB + [−5, 2]T = [−3, 1]T

wA = [1, 3]T

3. (3 points) Perceptron Learning Algorithm The table shown below displays points in the distribution R2. Sup-
pose we run the perceptron algorithm. We then note the total number of times each point participates in the
gradient descent step since it is misclassified, throughout the run.
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(a) Suppose that the learning rate is α = 0.8, and the initial weight vector is w0 = [−3, 2, 1]T , where the bias term
is the last component. What is the equation of the separating line in terms of the features x1 and x2 found by
the perceptron algorithm?

Solution: At each iteration, the weights are updated by picking a misclassified point and applying the
update rule. The learned weights are w = w0+α∗

∑
(ϵ(i)∗y(i)∗x(i)), where the variable ϵ(i)is the number of

times the i’th point is misclassified. Recall that we augment each point x with x3 = 1 for the bias. Thus,
we have w = (−3, 2, 1) + 0.8(2 ∗ 1 ∗ (−3, 2, 1) + 1 ∗ 1 ∗ (−1, 1, 1) + 1 ∗ −1 ∗ (1,−1, 1)) = (−9.4, 6.8, 2.6).
Therefore, the equation of the separating line is −9.4x1 + 6.8x2 + 2.6 = 0.

(b) For which, if any, point or points in our dataset would the learned decision boundary change if we removed
it? Explain your answer.

Solution: If we removed either of the 3 points that were misclassified during training, it would cause a
change in the learned decision boundary.

(c) How would our result differ if we were to add the additional training point (-1, -1) with label +1?

Solution: The data would no longer be linearly separable, so the perceptron algorithm would not termi-
nate.

4. (3 points) Perceptron Update Rule as Stochastic Gradient Ascent: Recall the binary perceptron update rule:

w← w +

0 if y = y∗

y∗x if y , y∗

where y∗ is the true class label, and y ∈ {−1, 1} is the binary class prediction produced by the perceptron on
datapoint x. Notice that gradient ascent’s update rule is also of a similar form, but it is w← w+∇wL(w) for some
objective function L(w).

We can thus recast the perceptron update rule as a form of stochastic (single-sample, but without randomness)
gradient ascent on some unknown objective function. Find the objective function that we are maximizing given
by the perceptron update rule (disregarding any constants that don’t change the parameter that maximizes the
function), and briefly explain what it intuitively means. It should be expressed as a single term, without cases,
as a function of y∗,w, x. Hints: 1) the objective involves a min over two terms, and think about the sign of w · x;
2)
∫

x dw = w · x +C when w, x are vectors (C is a constant vector from integrating).

Objective: maxw min( , )

Solution: Integrate both cases. If y = y∗, then the integral of 0 is C where C is an integration constant that we
will ignore. If y , y∗, then the integral of y∗x is y∗w · x +C and we can disregard the constant C. Combining
these two, we have that the objective function is maxw min(0, y∗w · x).

This means that the objective is to maximize classification accuracy as measured by 0 if the prediction is
correct, and a negative value if the prediction is incorrect.
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