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1. Let a, b, c ∈ N. Prove the following using contraposition: if a2 + b2 + c2 ≡ 3 mod 4 then a + b + c 6≡ 0
mod 4.

Proof: We prove the contrapositive. Assume that a + b + c ≡ 0 mod 4, and show a2 + b2 + c2 6≡ 3
mod 4.

a + b + c ≡ 0 mod 4 ⇐⇒
(a + b + c)2 ≡ 0 mod 4 ⇐⇒

a2 + b2 + c2 + 2(ab + bc + ac) ≡ 0 mod 4 ⇐⇒
a2 + b2 + c2 + 2k ≡ 0 mod 4 for k = ab + bc + ac

As for any positive integer k we have that 2k is congruent to either 0 or 2 mod 4, it means that
a2 + b2 + c2 will also be either congruent to 0 or 2 mod 4. Therefore, a2 + b2 + c2 6≡ 3 mod 4, and
the contrapositive is proved.

5 pts: Writing out the contrapositive correctly
2 pts: Reaching the statement a2 + b2 + c2 + 2(ab + bc + ac) ≡ 0 mod 4
1.5 pts: Reaching the statement 2(ab + bc + ac) ≡ 0 mod 4
1.5 pts: Reaching the statement 2(ab + bc + ac) ≡ 2 mod 4
1.5 pts: Identifying a2 + b2 + c2 ∈ 0 mod 4
1.5 pts: Identifying a2 + b2 + c2 ∈ 2 mod 4
2pts: Inferring that the negation of the premise of the original statement follows, i.e. a2 + b2 + c2 6≡ 3
mod 4

2. Show that for any prime number p > 2 there is some prime number q strictly greater than p and
smaller than p!. Prove this claim directly.

Proof: We will prove the statement directly.

Let all prime numbers smaller or equal than p be p1, p2, . . . , pk ≤ p. Consider the number r =
p1p2 . . . pk + 1. r will not be divisible by any of p1, . . . , pk, and thus will either be itself prime, or have
a prime factor greater than p.

Now, let us compare r with p!. We have

p! ≥ 1 ∗ 2 ∗ · · · ∗ (p1 − 1) ∗ p1 ∗ (p1 + 1) . . . (p2 − 1) ∗ p2 ∗ (p1 + 2) · · · ∗ pk
> p1 ∗ p2 · · · ∗ pk
= (r − 1)

So, we have p! ≥ r. As we showed that there is a prime number greater than p and smaller or equal
than r, it means this prime number will also be smaller than p!. This concludes our proof.

2 pts: Identifying a candidate prime number r in the proof
2 pts: ensuring/showing candidate prime r < p!
2 pts: ensuring/showing candidate prime r > p
3 pts: recognizing that if r is prime proof is complete
2 pts: If r is not prime, identifying that there is another prime factor of r, f
2 pts: If r is not prime, observing/demonstrating that f < p!
2 pts: If r is not prime, observing/demonstrating that f > p



3. Use proof by contradiction to show that n2 6∈ Ω(n!). You may not use the limit rule. Please use
the formal definition of big Omega.

Assume n2 ∈ Ω(n!). That means there exists c > 0 and n0 > 0 such that 0 ≤ cn! ≤ n2 whenever
n ≥ n0. Now, divide both sides of the equation by n and we have 0 ≤ c(n − 1)! ≤ n. Let n∗ =
dmax(n0,

1
c )e+ 4⇒ n∗ ≥ 1

c + 4. (The left inequality holds because c > 0 and n0 > 0.) Let’s consider
the right inequality:

c(n∗ − 1)! ≥ c (n∗ − 1) (n∗ − 2) (n∗ − 3) (n∗ − 4)! (by definition of factorial)
≥ (n∗ − 1) (n∗ − 2) (n∗ − 4)! (since c · (n∗ − 3) ≥ 1 because n∗ ≥ 1

c + 4)
≥ (n∗ − 1) (n∗ − 2) (since (n∗ − 4)! ≥ 1 because n0 > 0 and c > 0)
≥ n∗2 − 3n∗ + 2
≥ n∗(n∗ − 3) + 2 (factoring)
≥ n∗(n∗ − 3) + 2 > n∗ (since n∗ ≥ 4 implies (n∗ − 3) ≥ 1)
⇒⇐
2pts: Write out the correct statement to prove by contradiction.
3pts: Write out the correct formal definition of big Omega.
5pts: Set a valid n∗ value to break the inequality.
- 1 pt attempt to set n∗ even if incorrect
- 2 pts attempt to set n∗ ≥ 4 even if incorrect
- 2 pts for correct choice
5pts: Correctly manipulate the inequality equation to show contradiction.
-1 pt - any attempt to manipulate n! even if incorrect.
- 1 pt -correct inference to eliminate c
- 1 pt -correct inference to upper bound factorial
- 1 pt - correct expression for which to show contradication
- 1 pt - correct inference to show expression greater than n
0pts: Each minor algebraic mistake.
0pts: No deduction for not using ceiling
5 pts: Use of limit rules rather than the formal definition of big Omega (Solution must otherwise be
correct.)

4. Use proof by induction over |B| to show the following claim: For any sets A and B , |A×B| = |A|×|B|.
B.C. For |B| = 0, |A×B| = |∅| = 0× |A| = 0.

I.H. Assume for all 0 ≤ n ≤ k for some arbitrary fixed k ≥ 0 that |B| = n and |A×B| = |A| × |B| =
n|A|.
I.S. When |B| = k+1, since B is nonempty, B = B′∪{a} where a is an element of B and B′ = B−{a}.
The cardinality of the cartesian product can be written as,

|A×B| = |A× (B′ ∪ {a})|
= |(A×B′) ∪ (A× {a})|
= |A×B′|+ |A× {a}|

By I.H., since |B′| = k, |A × B′| = k|A|. Let’s consider |A × {a}|. By the definition of the Cartesian
product, for each element of A, x, this set will contain an ordered pair, < x, a > with the element x
first and the element a second. There will be |A| such ordered pairs so |A× {a}| = |A| Accordingly,

|A×B| = (k)|A|+ |A| = |A|(k + 1) = |A| × |B|

.

2pts: Base case is correct (Need to start with 0)
2pts: IH assumes |B| = k, |A×B| = |A| × |B|



1pts: IH indicates correct range (≥ 0).
3pts: partitioning of the set in the inductive step around an arbitrary element
2 pts: application of IH
2 pts:Use of definition of Cartesian product to explain why |A×{a}| = |A|. This may be done as base
case or in the inductive step
3 pts: Correct inference and algebraic manipulation showing in the inductive step that

|A×B| = (k + 1)|A|

-0pts: Each minor algebraic or set manipulation mistake.

5. Show that 42n−1 + 3n+1 is divisible by 13 for all n ≥ 1 by induction.

B.C. For n = 1, 42n−1 + 3n+1 is 13, which is clearly divisible by 13.

I.H. For n = k(k ≥ 1), assume there exists an integer ` such that 42k−1 + 3k+1 = 13`.

I.S. For n = k + 1,

42k+1 + 3k+2 = 42k+1 + 3 · 3k+1

= 16 · 42k−1 + 3 · (3k+1)

= 13 · 42k−1 + 3 · 42k−1 + 3 · (3k+1)

= 13 · 42k−1 + 3(42k−1 + 3k+1)

= 13 · 42k−1 + 3(13`)

= 13(42k−1 + 3`)

As 42k−1 + 3` is an integer, 42k+1 + 3k+2 is divisible by 13.

This concludes proof.

2pts: Base case is correct
2pts: IH assumes 42k−1 + 3k+1 is divisible by 13.
2pts: IH indicates correct range (≥ 1).
2pts: starting IS from 42k+1 + 3k+2

2pts: correct factoring to apply inductive hypothesis
2 pts: correct application of inductive hypothesis
3 pts: correct inference for divisibility by 13
0pts: Each minor algebraic mistake.

6. Prove the following claim by contradiction: If p,q and
√

2p + 3
√

3q are all rational number, show that
p = q = 0. You can assume

√
2 and 3

√
3 are both irrational.

Suppose √
2p +

3
√

3q = r,

where r is a rational number.
3
√

3q = r −
√

2p

Taking cube of both side and simplifying them, we get

√
2
(
3pr2 + 2p3

)
= r3 + 6rp2 − 3q3.

If we assume 3pr2 + 2p3 6= 0, we can get

√
2 =

r3 + 6rp2 − 3q3

3pr2 + 2p3
.



This contradicts
√

2 is irrational. So 3pr2 + 2p3 = 0. As 3pr2 + 2p3 = p(3r2 + 2p2) = 0, we knew p = 0
or 3r2+2p2 = 0. That is equivalent to p = 0 or “r = 0 and p = 0”. In either case, we can conclude p = 0.

Now substituting p = 0, we get
3
√

3q = r.

If we assume q = 0, we have 3
√

3 = r
q , which contradicts the assumption. So we get q = 0.

5 pts: Correct negation of the implication to begin the proof by contradiction.
3 pts: Using the representation of 3

√
3 and

√
2 as rational numbers to infer a contradiction using irra-

tionality. (i.e.p 6= 0 and q 6= 0 leads to contradiction.)
3 pts: Using the representation of 3

√
3 and

√
2 as rational numbers to infer p = 0 and deriving contra-

diction using irrationality (i.e. p = 0 and q 6= 0 leads to contradiction)
3 pts: Using the representation of 3

√
3 and

√
2 as rational numbers to infer/consider q = 0 and deriving

contradiction using irrationality (i.e. q = 0 and p 6= 0 leads to contradiction)
1 pts: Using assumptions/infererence from previous cases such as 3pr2 + 2p3 6= 0 and p = 0 to derive
contradiction that q = 0 (and p = 0).

7. A restaurant has a four course meal and for each course customers have a choice of three dishes per
course and must choose exactly one dish. What is the fewest number of customers that the restaurant
must have during a single evening dinner service to ensure that 4 customers order the exact same meal
i.e. they ordered the same dish for each course for all four courses? Prove your answer.

LetA be the set of customers during dinner service and B the set of all possible meals during a single
four course dinner service. |B| is the size of the Cartesian product of the choices of dishes for each
course, so |B| = 34 = 81.
Let f : A → B be such that customers are mapped to their meal choices. We want to figure out the
smallest |A| such that at least one meal in B has (at least) 4 customers. By the extended PHP if A

is such that d |A||B|e = 4, the problem will be satisfied. If |A| = |B| · 4 the claim would be true, but it

would not be the fewest customers and the claim would be false if |A| = |B| · 3. In this case to ensure

d |A||B|e = 4 let |A| = |B| · 3 + 1 = 244 and claim follows.

2 pts: specification of B (pigeonholes)
3 pts: correct |B|
1 pt: correct function mapping customers to meals
3 pts correct application of extended PHP
6 pts: correct value for |A|
- 2 pts: mention why cannot be fewer
- 2 pts: mention why must be less than number of possible meals times 4
- 2 pts: correct use of ceiling function to get smallest cardinality of A (by adding one)

8. Let f : X → Y be a function and f−1 : Y → X be its inverse relation. f−1 is a bijective function.
Show that f is a bijection.

(a) Use proof by contradiction to show that f is injective.

(b) Use proof by contradiction to show tht f is surjective.

(c) You cannot simply cite any results shown in the textbook or class.

(d) You must write your answer in as much quantificational logic as you can.You will not
receive much credit for answers not written in quantificational logic.



(a) Use proof by contradiction to show that f is injective.
Assume ∃x1, x2 ∈ X,∃y ∈ Y (x1 6= x2 ∧ f(x1) = f(x2) = y)
=⇒ < y, x1 >∈ f−1∧ < y, x2 >∈ f−1 (by definition of inverse relation)
=⇒ x1 = x2 (since f−1 is bijection (but function enough))
⇒⇐

(b) Use proof by contradiction to show that f is surjective.
Assume ∃y ∈ Y, ∀x ∈ X < x, y >/∈ f
=⇒ ∃y ∈ Y,∀x ∈ X < y, x >/∈ f−1 (by definition of inverse relation)
⇒⇐ (since f−1 is function)

Recall that f−1 being a function means that
∀y ∈ Y,∃x ∈ X(< y, x >∈ f−1 ∧ (∀z ∈ X(x 6= z =⇒ < y, z >/∈ f−1)))

5 pts: quantificational logic (will give pt based on 20 percent increments)
2 pts: correct negation for showing f injective.
2 pts: correct inference towards showing contradiction
1 pt: valid contradicton
2 pts: correct negation for showing f surjective.
2 pts: correct inference towards showing contradiction
1 pt: valid contradicton


