Midterm

March 19, 2021

1. Let $a, b, c \in \mathbb{N}$. Prove the following using contraposition: if $a^2 + b^2 + c^2 \equiv 3 \mod 4$ then $a + b + c \not\equiv 0 \mod 4$.

Proof: We prove the contrapositive. Assume that $a+b+c\equiv 0 \mod 4$, and show $a^2+b^2+c^2\not\equiv 3 \mod 4$.

$$a+b+c \equiv 0 \mod 4 \iff$$

$$(a+b+c)^2 \equiv 0 \mod 4 \iff$$

$$a^2+b^2+c^2+2(ab+bc+ac) \equiv 0 \mod 4 \iff$$

$$a^2+b^2+c^2+2k \equiv 0 \mod 4 \text{ for } k=ab+bc+ac$$

As for any positive integer k we have that 2k is congruent to either 0 or 2 mod 4, it means that $a^2 + b^2 + c^2$ will also be either congruent to 0 or 2 mod 4. Therefore, $a^2 + b^2 + c^2 \not\equiv 3 \mod 4$, and the contrapositive is proved.

5 pts: Writing out the contrapositive correctly

2 pts: Reaching the statement $a^2 + b^2 + c^2 + 2(ab + bc + ac) \equiv 0 \mod 4$

1.5 pts: Reaching the statement $2(ab + bc + ac) \equiv 0 \mod 4$

1.5 pts: Reaching the statement $2(ab + bc + ac) \equiv 2 \mod 4$

1.5 pts: Identifying $a^2 + b^2 + c^2 \in 0 \mod 4$

1.5 pts: Identifying $a^2 + b^2 + c^2 \in 2 \mod 4$

2pts: Inferring that the negation of the premise of the original statement follows, i.e. $a^2 + b^2 + c^2 \not\equiv 3 \mod 4$

2. Show that for any prime number p > 2 there is some prime number q strictly greater than p and smaller than p!. Prove this claim directly.

Proof: We will prove the statement directly.

Let all prime numbers smaller or equal than p be $p_1, p_2, \ldots, p_k \leq p$. Consider the number $r = p_1 p_2 \ldots p_k + 1$. r will not be divisible by any of p_1, \ldots, p_k , and thus will either be itself prime, or have a prime factor greater than p.

Now, let us compare r with p!. We have

$$p! \ge 1 * 2 * \cdots * (p_1 - 1) * p_1 * (p_1 + 1) \dots (p_2 - 1) * p_2 * (p_1 + 2) \dots * p_k$$

> $p_1 * p_2 \dots * p_k$
= $(r - 1)$

So, we have $p! \geq r$. As we showed that there is a prime number greater than p and smaller or equal than r, it means this prime number will also be smaller than p!. This concludes our proof.

2 pts: Identifying a candidate prime number r in the proof

2 pts: ensuring/showing candidate prime r < p!

2 pts: ensuring/showing candidate prime r > p

3 pts: recognizing that if r is prime proof is complete

2 pts: If r is not prime, identifying that there is another prime factor of r, f

2 pts: If r is not prime, observing/demonstrating that f < p!

2 pts: If r is not prime, observing/demonstrating that f > p

3. Use proof by contradiction to show that $n^2 \notin \Omega(n!)$. You may not use the limit rule. Please use the formal definition of big Omega.

Assume $n^2 \in \Omega(n!)$. That means there exists c > 0 and $n_0 > 0$ such that $0 \le cn! \le n^2$ whenever $n \ge n_0$. Now, divide both sides of the equation by n and we have $0 \le c(n-1)! \le n$. Let $n^* = \lceil \max(n_0, \frac{1}{c}) \rceil + 4 \Rightarrow n^* \ge \frac{1}{c} + 4$. (The left inequality holds because c > 0 and $n_0 > 0$.) Let's consider the right inequality:

```
 c(n^*-1)! \geq c(n^*-1)(n^*-2)(n^*-3)(n^*-4)! \text{ (by definition of factorial)} \\ \geq (n^*-1)(n^*-2)(n^*-4)! \text{ (since } c \cdot (n^*-3) \geq 1 \text{ because } n^* \geq \frac{1}{c} + 4) \\ \geq (n^*-1)(n^*-2) \text{ (since } (n^*-4)! \geq 1 \text{ because } n_0 > 0 \text{ and } c > 0) \\ \geq n^{*2} - 3n^* + 2 \\ \geq n^*(n^*-3) + 2 \text{ (factoring)} \\ \geq n^*(n^*-3) + 2 > n^* \text{ (since } n^* \geq 4 \text{ implies } (n^*-3) \geq 1) \\ \Rightarrow \Leftarrow
```

2pts: Write out the correct statement to prove by contradiction.

3pts: Write out the correct formal definition of big Omega.

5pts: Set a valid n^* value to break the inequality.

- 1 pt attempt to set n^* even if incorrect
- 2 pts attempt to set $n^* \geq 4$ even if incorrect
- 2 pts for correct choice

5pts: Correctly manipulate the inequality equation to show contradiction.

- -1 pt any attempt to manipulate n! even if incorrect.
- 1 pt -correct inference to eliminate c
- 1 pt -correct inference to upper bound factorial
- 1 pt correct expression for which to show contradication
- 1 pt correct inference to show expression greater than n

Opts: Each minor algebraic mistake.

Opts: No deduction for not using ceiling

5 pts: Use of limit rules rather than the formal definition of big Omega (Solution must otherwise be correct.)

4. Use proof by induction over |B| to show the following claim: For any sets A and B, $|A \times B| = |A| \times |B|$.

B.C. For
$$|B| = 0$$
, $|A \times B| = |\emptyset| = 0 \times |A| = 0$.

- **I.H.** Assume for all $0 \le n \le k$ for some arbitrary fixed $k \ge 0$ that |B| = n and $|A \times B| = |A| \times |B| = n|A|$.
- **I.S.** When |B| = k+1, since B is nonempty, $B = B' \cup \{a\}$ where a is an element of B and $B' = B \{a\}$. The cardinality of the cartesian product can be written as,

$$|A \times B| = |A \times (B' \cup \{a\})|$$
$$= |(A \times B') \cup (A \times \{a\})|$$
$$= |A \times B'| + |A \times \{a\}|$$

By I.H., since |B'| = k, $|A \times B'| = k|A|$. Let's consider $|A \times \{a\}|$. By the definition of the Cartesian product, for each element of A, x, this set will contain an ordered pair, $\langle x, a \rangle$ with the element x first and the element a second. There will be |A| such ordered pairs so $|A \times \{a\}| = |A|$ Accordingly,

$$|A \times B| = (k)|A| + |A| = |A|(k+1) = |A| \times |B|$$

2pts: Base case is correct (Need to start with 0)

2pts: IH assumes |B| = k, $|A \times B| = |A| \times |B|$

1pts: IH indicates correct range (≥ 0).

3pts: partitioning of the set in the inductive step around an arbitrary element

2 pts: application of IH

2 pts:Use of definition of Cartesian product to explain why $|A \times \{a\}| = |A|$. This may be done as base case or in the inductive step

3 pts: Correct inference and algebraic manipulation showing in the inductive step that

$$|A \times B| = (k+1)|A|$$

-0pts: Each minor algebraic or set manipulation mistake.

5. Show that $4^{2n-1} + 3^{n+1}$ is divisible by 13 for all $n \ge 1$ by induction.

B.C. For n = 1, $4^{2n-1} + 3^{n+1}$ is 13, which is clearly divisible by 13.

I.H. For $n = k(k \ge 1)$, assume there exists an integer ℓ such that $4^{2k-1} + 3^{k+1} = 13\ell$.

I.S. For n = k + 1,

$$\begin{aligned} 4^{2k+1} + 3^{k+2} &= 4^{2k+1} + 3 \cdot 3^{k+1} \\ &= 16 \cdot 4^{2k-1} + 3 \cdot (3^{k+1}) \\ &= 13 \cdot 4^{2k-1} + 3 \cdot 4^{2k-1} + 3 \cdot (3^{k+1}) \\ &= 13 \cdot 4^{2k-1} + 3(4^{2k-1} + 3^{k+1}) \\ &= 13 \cdot 4^{2k-1} + 3(13\ell) \\ &= 13(4^{2k-1} + 3\ell) \end{aligned}$$

As $4^{2k-1} + 3\ell$ is an integer, $4^{2k+1} + 3^{k+2}$ is divisible by 13.

This concludes proof.

2pts: Base case is correct

2pts: IH assumes $4^{2k-1} + 3^{k+1}$ is divisible by 13.

2pts: IH indicates correct range (≥ 1).

2pts: starting IS from $4^{2k+1} + 3^{k+2}$

2pts: correct factoring to apply inductive hypothesis

2 pts: correct application of inductive hypothesis

3 pts: correct inference for divisibility by 13

Opts: Each minor algebraic mistake.

6. Prove the following claim by contradiction: If p,q and $\sqrt{2}p + \sqrt[3]{3}q$ are all rational number, show that p = q = 0. You can assume $\sqrt{2}$ and $\sqrt[3]{3}$ are both irrational. Suppose

$$\sqrt{2}p + \sqrt[3]{3}q = r,$$

where r is a rational number.

$$\sqrt[3]{3}q = r - \sqrt{2}p$$

Taking cube of both side and simplifying them, we get

$$\sqrt{2} \left(3pr^2 + 2p^3 \right) = r^3 + 6rp^2 - 3q^3.$$

If we assume $3pr^2 + 2p^3 \neq 0$, we can get

$$\sqrt{2} = \frac{r^3 + 6rp^2 - 3q^3}{3pr^2 + 2p^3}.$$

This contradicts $\sqrt{2}$ is irrational. So $3pr^2 + 2p^3 = 0$. As $3pr^2 + 2p^3 = p(3r^2 + 2p^2) = 0$, we knew p = 0 or $3r^2 + 2p^2 = 0$. That is equivalent to p = 0 or "r = 0 and p = 0". In either case, we can conclude p = 0.

Now substituting p = 0, we get

$$\sqrt[3]{3}q = r.$$

If we assume q=0, we have $\sqrt[3]{3}=\frac{r}{q}$, which contradicts the assumption. So we get q=0.

5 pts: Correct negation of the implication to begin the proof by contradiction.

3 pts: Using the representation of $\sqrt[3]{3}$ and $\sqrt{2}$ as rational numbers to infer a contradiction using irrationality. (i.e. $p \neq 0$ and $q \neq 0$ leads to contradiction.)

3 pts: Using the representation of $\sqrt[3]{3}$ and $\sqrt{2}$ as rational numbers to infer p=0 and deriving contradiction using irrationality (i.e. p=0 and $q\neq 0$ leads to contradiction)

3 pts: Using the representation of $\sqrt[3]{3}$ and $\sqrt{2}$ as rational numbers to infer/consider q=0 and deriving contradiction using irrationality (i.e. q=0 and $p\neq 0$ leads to contradiction)

1 pts: Using assumptions/infererence from previous cases such as $3pr^2 + 2p^3 \neq 0$ and p = 0 to derive contradiction that q = 0 (and p = 0).

7. A restaurant has a four course meal and for each course customers have a choice of three dishes per course and must choose exactly one dish. What is the fewest number of customers that the restaurant must have during a single evening dinner service to ensure that 4 customers order the exact same meal i.e. they ordered the same dish for each course for all four courses? Prove your answer.

Let A be the set of customers during dinner service and B the set of all possible meals during a single four course dinner service. |B| is the size of the Cartesian product of the choices of dishes for each course, so $|B| = 3^4 = 81$.

Let $f:A\to B$ be such that customers are mapped to their meal choices. We want to figure out the smallest |A| such that at least one meal in B has (at least) 4 customers. By the extended PHP if A is such that $\lceil \frac{|A|}{|B|} \rceil = 4$, the problem will be satisfied. If $|A| = |B| \cdot 4$ the claim would be true, but it would not be the fewest customers and the claim would be false if $|A| = |B| \cdot 3$. In this case to ensure $\lceil \frac{|A|}{|B|} \rceil = 4$ let $|A| = |B| \cdot 3 + 1 = 244$ and claim follows.

2 pts: specification of B (pigeonholes)

3 pts: correct |B|

1 pt: correct function mapping customers to meals

3 pts correct application of extended PHP

6 pts: correct value for |A|

- 2 pts: mention why cannot be fewer

- 2 pts: mention why must be less than number of possible meals times 4

- 2 pts: correct use of ceiling function to get smallest cardinality of A (by adding one)

- 8. Let $f: X \to Y$ be a function and $f^{-1}: Y \to X$ be its inverse relation. f^{-1} is a bijective function. Show that f is a bijection.
 - (a) Use proof by contradiction to show that f is injective.
 - (b) Use proof by contradiction to show that f is surjective.
 - (c) You cannot simply cite any results shown in the textbook or class.
 - (d) You must write your answer in as much quantificational logic as you can. You will not receive much credit for answers not written in quantificational logic.

```
(a) Use proof by contradiction to show that f is injective. Assume \exists x_1, x_2 \in X, \exists y \in Y (x_1 \neq x_2 \land f(x_1) = f(x_2) = y) \Longrightarrow \langle y, x_1 \rangle \in f^{-1} \land \langle y, x_2 \rangle \in f^{-1} (by definition of inverse relation) \Longrightarrow x_1 = x_2 (since f^{-1} is bijection (but function enough)) \Longrightarrow
```

(b) Use proof by contradiction to show that f is surjective. Assume $\exists y \in Y, \forall x \in X < x, y > \notin f$ $\Longrightarrow \exists y \in Y, \forall x \in X < y, x > \notin f^{-1}$ (by definition of inverse relation) $\Longrightarrow \Leftarrow \text{ (since } f^{-1} \text{ is function)}$

```
Recall that f^{-1} being a function means that \forall y \in Y, \exists x \in X (< y, x > \in f^{-1} \land (\forall z \in X (x \neq z \implies < y, z > \notin f^{-1})))
```

5 pts: quantificational logic (will give pt based on 20 percent increments)

2 pts: correct negation for showing f injective.

2 pts: correct inference towards showing contradiction

1 pt: valid contradicton

2 pts: correct negation for showing f surjective.

2 pts: correct inference towards showing contradiction

1 pt: valid contradicton