Final
May 12, 2021

1. Consider the following pseudo-code of binary search and answer the following questions.

Algorithm 1 Binary Search algorithm

function RECBINARYSEARCH(low, high, A, x)
if low = high and Aflow] = = then
return low
if low = high and Allow| # = then
return -1
mid + |(low + high)/2]
if r < A[mid] then
high « mid
if = > A[mid| then
low +— mid + 1
return RECBINARYSEARCH({low, high, A, x)
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(a) Suppose an input list A = (2, 5, 8, 10, 13, 19, 21, 32, 37, 52) and you called RecBinarySearch({low=1,
high=10, A, £=35). Give the values for variables low and high for each call to RecBinarySearch. Then
give the final value return value. Note that the index of list starts with 1 in this problem, ie. A[l] = 2,
Al2] = 5 and s0 on. Your answer would look like this:

low = 7, high = ?

low =7, high =7

Return value: 7

{b) Use the recurrence formula to show that the worst case time complexity of RecBinarySearch is B(logn),
where i = high - low.

(c} A student added a debugging function f on the line 1 to print the elements in the range of [low, high| in
the array (Algorithm 2). The runtime of f{low, high) is en where ¢ is a constant and n = high - low. What
is the worst case time complexity of RecBinarySearch2? Prove your result using a recurrence relation.

Algorithm 2 Binary Search algorithm with a debug line

function RECBINARYSEARCHZ(low, high, A, x)
f{low, high)
if low = high and Allow| = = then
return low
if low = high and Allow| # = then
return -1
mid + |({low + high)/2]
if z < A[mid| then
high + mid
if z > Afmid] then
low + mid + 1
: return RECBINARYSEARCHZ2(low, high, A, z)
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2. Directed Acyclic Graphs (DAGs) and Divisibility
(a) Draw the following DAG, G = (V, E) where V = {1,2,3,4,5,6,7,8,9,10} and E = {< u,v >: u
divides v and v/u is prime }.
(b) What edges must be added to the edges of the DAG G to create the reflexive, transitive closure
of its edges?
{¢) Show that the divisibility relation (p|g) is a partial order on Z=9,



3. Suppose we have a simple undirected graph & with n vertices and every vertex in & has degree strictly
more than [n/2]. Prove that & is a connected graph.



4. Edge Connectivity

Given a graph 7 below:

(a) What is the edge connectivity of G'7

(b) Given a simple graph, G = (V, E), BFSCheckConnect will return true if the graph is connected
and false otherwise,

Algorithm 3 BFSConnectCheck((V, E))

function BFSCoxNECTCHECK((V, E))
Select the frst vertex in V to be s
Set discovered(s] = true and discovered[v] = false for all other v
L[0] + {s}
t+—10
while Lli] is not empty de
Make L[i + 1] as empty list
for all vertices u € L[i] do
for all edges (u,v) do
if discovered|v] = false then
discovered[v] + true
Add v to list L[i + 1]
s+—i+1
: for all vertices u & V' do
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14:  if discovered|u|=false then
15: return  false
16: return true

Given a simple connected graph, G = (V, E), ThreeConnectedCheck will return true if G is
3-connected and false otherwise.

Algorithm 4 ThreeConnectedCheck((V, E))

0: function THREECONNECTEDCHECK((V, E))
1: T = '[}

2: for all vertices u € V do

32 T+TUu

4 for all vertices v e V — T do

5: V =V - {u,v)

6 E + E—{ec E| e is incident to u or v}
'I-'r:

L

a:

if BFSConnectCheck((V', E')) = false then
return [alse
return true

State the loop invariant of the outer loop (starting on line 2) of ThreeConnected Check.
{c) Prove the correctness of ThreeConnectedCheck.



5. The cost of the minimum spanning tree (MST) on complete graph

(a)

Consider Ky. Now consider giving the edges of Ky a weight. Each edge will have a distinct weight
and the weight will be a value from 1 to 6. How can you assign the weights to the edges of Ky such
that the cost of the MST on K4 will be the smallest possible? Explain your answer by drawing
the graph with weights on edges and tracing the algorithm you used to construct the MST and

why.

Now consider the complete graph on n vertices with similar edge costs. More precisely, let G = K,
with its edges given costs from 1 to “["Tfl}'. Show that for any n > 2 there exists an assigment of
weights to the edges of G such that the cost of the MST on G is “':"2_1:'_



6. Satishability and Bipartite graphs.

(a)

Consider the expression (p&g) A{-p@Eq). A graph representing this expression will be the graph
G = {V,E} where V = {p, -p,q, ~q} and E = {(p. —p}, (. g} (~P. 9}, (g, ~q)}. Is this expression
satisfinble? If it is satisfiable, give a satisfving truth assipnment. If it is not satisfiable, explain
why it is not. Is its corresponding graph 2-colorable? If it is 2-colorable, give a valid 2-coloring
for the graph. If it is not, justify why not.

Consider the expression (p&Eg) A (—p&E—g). A graph representing this expression will be the graph
G = {V,E} where V = {p, ~p,q, ~q} and E = {{p, ~p), (p.2), (-», ~q), (¢, ~q) }. Is this expression
satishable? If it is satishable, give a satisfying truth assignment. If it is not satisfiable, explain
why it is not. Is its corresponding graph 2-colorable? If it is 2-colorable, give a valid 2-coloring
for the graph. If it is not, justify why not.

Now more generally, consider a formula of propositional logic consisting of a conjunction of clauses
of the form (+p & =q), where p and g are propositional variables (not necessarily distinct) and
+p stands for either p or —-p. Consider the graph in which the vertices include p and —p for all
propositional variables p appearing in the formula, and in which there is an edge (a) connecting
p and —p for each variable p, and (b) connecting two literals if their exclusive-or is a clause of the

formula. Prove that a formuls is satisfiable if and only if its corresponding praph as described

above 18 2-colorable.
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