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1. Let X1, . . . , Xn be i.i.d. N(0, σ2) and Y1, . . . , Ym be i.i.d. N(0, τ 2) and independent
of the Xi. For each of the following give the distribution (including the name and
values of any parameters) as well as justification.
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2. Let X1, . . . , Xn be i.i.d. with the exponential distribution whose density function is

f(x) =

{
θe−θx, x ≥ 0,

0, x < 0,
(1)

where θ > 0 is unknown.

(a) Show that the moment generating function (MGF) of the distribution (1) is

M(t) =
θ

θ − t
. (2)

(b) Name an open interval I containing 0 for which (2) is valid for all t ∈ I.

(c) Use the MGF to compute the first 2 moments of the exponential distribu-
tion (1).
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(d) Find the Method of Moments estimator θ̂ of θ.

(e) Use the approximation
1

X
≈ θ − θ2(X − 1/θ) (3)

to approximate the variance of θ̂. Explain how you could use this to approxi-
mate the estimated standard error of θ̂. You can use (3) without justification
and assume it is accurate enough for these approximations.


