1. Let X_1, \ldots, X_n be i.i.d. $N(0, \sigma^2)$ and Y_1, \ldots, Y_m be i.i.d. $N(0, \tau^2)$ and independent of the X_i . For each of the following give the distribution (including the name and values of any parameters) as well as justification.

(a)
$$\sum_{i=1}^{n} X_i$$

(b)
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

(c)
$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

(d)
$$\frac{\overline{X}}{S/\sqrt{n}}$$

$$\sum_{i=1}^{m} Y_i^2$$

$$\frac{\sum_{i=1}^{n} X_i^2}{\sum_{i=1}^{m} Y_i^2}$$

2. Let X_1, \ldots, X_n be i.i.d. with the exponential distribution whose density function is

$$f(x) = \begin{cases} \theta e^{-\theta x}, & x \ge 0, \\ 0, & x < 0, \end{cases}$$
 (1)

where $\theta > 0$ is unknown.

(a) Show that the moment generating function (MGF) of the distribution (1) is

$$M(t) = \frac{\theta}{\theta - t}. (2)$$

- (b) Name an open interval I containing 0 for which (2) is valid for all $t \in I$.
- (c) Use the MGF to compute the first 2 moments of the exponential distribution (1).

- (d) Find the Method of Moments estimator $\widehat{\theta}$ of θ .
- (e) Use the approximation

$$\frac{1}{\overline{X}} \approx \theta - \theta^2 (\overline{X} - 1/\theta) \tag{3}$$

to approximate the variance of $\widehat{\theta}$. Explain how you could use this to approximate the estimated standard error of $\widehat{\theta}$. You can use (3) without justification and assume it is accurate enough for these approximations.