Math 408 Practice Final Exam

1. Let X ~ Bin(n,p), the binomial distribution on n > 2 trials with probability p of
success. Recall that the density function of X is

P(X =2) = (Z)pm(l -p)"* x=0,1,...,n.

(a) Find the moment generating function (MGF) of X. It may help to recall the

binomial theorem,
(a+b)" = (n) a®b" "
“\z

r=

for any numbers a, b.

(b) Use the MGF to compute the first two moments of X.

Solution: We have

M) = e = 3 (1)1 = ok 1

M'(t) = n(e'p+1 —p)" le'p,

M"(t) = ne'pl(e'p+1 —p)" "+ (n = 1)(e'p+1 —p)"2e'p]
=ne'p(e’p+1—p)"?le'p+1—p+(n—1)e'p]
=ne'ple'p+ 1 —p)" 2[ne'p+ 1 —p|.

Then EX = M'(0) = np and

EX? = M"(0) = np(np+1—p) =np(l — p) + (np)>.

2. For 0 < z < 1, define the two c.d.f.s Fy(x) = 2* and Fi(z) = 2. Consider a
random variable X that has c.d.f. either Fy or F}, and suppose we want to test

Hy: X has c.d.f. Fy, vs. H;:X hasc.d.f. Fj.

(a) Give the form of the rejection rule of the Neyman-Pearson test of these hy-
potheses as simply as possible, in terms of just X and an undetermined critical
value.

(b) Given a € (0,1), give the rejection rule of the level-a version of this test.

(c) What is the power of the level-a test?
Solution: The densities are fo(z) = 2x and fi(x) = 322, so

fo(X)  2X 2

AX) T 3X2 T 3X7
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and this is < C" iff X > C. For the level-a test, we need
a=P(X>C)=1-F(C)=1-C?
so C =+/1 — a. The power of this test is
P(X>VI-a)=1-F( \1-a)=1-(1-a)*%

3. Suppose Y is a nonnegative random variable with mean FY = p and whose variance
varies with its mean according to Var(Y) = ¢%(u) = p3. Find a variance stabi-
lizing transformation f such that the variance of the transformed variable f(Y) is
approximately constant in .

Solution: We seek f such that
1
f'(n) =i T

so f(u) = 1/\/i works and f(Y) = 1/VY is the transformed variable.

4. Let Xy,..., X, be iid. random variables (not necessarily normally distributed)
with mean p and variance o2, and let

be the sample mean. Use the delta method to find an approximation for
Var[(X,,)?]

in terms of u, o, and n.

Solution: We have (X,)? = f(X,) where f(x) = 22, and so f'(x) = 2x. We know
that EX, = u, Var(X,) = 0%/n, and the delta method tells us that
(X

)’ = F(X0) = f(u) + () (X0 — )

SO

Varl(X,)*] = [f'(w)]* Var(X,) = (2u)*(0® /n) = 4p*0® /n.

5. Let Xi,...,X, beiid. N(u,o?) where both y and ¢ are unknown, and let X =
(1/n) 3", X; denote the usual sample mean. We have discussed two different
estimators for o2 in this situation, the sample variance
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which is unbiased for o2, and the MLE of o2,

1 « —
A2:— Xz—XQ
o n@ )

Since both of these are proportional to >.1 (X; — X)?, in this problem we will
investigate the estimator

n
T,=a) (X;—X),
i=1
where a > 0 is an arbitrary constant.

(a) What is the distribution of 7,7 Hint: It may help to first recall the distribution
of 52

(b) What is the bias of T, for estimating ¢*?

(¢c) What is the variance of 7,7

(d) Recall that the mean square error (MSE) of an estimator 0 of 0 is given by
MSE(#) = E(6 — 0)> = Var(f) + [bias(6)]>.
What is the MSE of T, for estimating o2?
(e) What value of a minimizes the MSE of 7,7
Solution:
(a) Since T, = a(n — 1)5% and S* ~ (6*/(n —1))x?_, by Theorem 97,
Ta ~ CLU2X2_1-
(b) Since the expectation of a x* is its d.f., ET, = ac*(n —1). Thus,
bias(T,) = ET, — 0* = ¢*la(n — 1) — 1].
(c) Since the variance of a x* is twice its d.f., Var(T,) = a*c* - 2(n — 1).
(d)
MSE(T,) = Var(T,) + [bias(T,)]
=2a*c*(n — 1) + o*la(n — 1) — 1]?
=c'la*(n—1)(2+n—1) —2a(n — 1) + 1]
=c*la*(n — )(n+1) —2a(n — 1) +1]. (1)

4

(e) Dropping the o* in this last expression, differentiating w.r.t. a and setting

equal to 0 yields
0=2a(n—1)(n+1)—2(n—1)=2(n—Da(n+1) —1],

so a=1/(n+ 1) is the minimizer, noting that (1) is quadratic in a.



