CSCI-201: Principles of Software Development

Fall 2021

PA3: SalEats v2.0

Concepts Covered:

e Networking

e Multi-Threading

e Concurrency Issues
e API Querying

Introduction:

After a stressful and sweaty pitch, the Council of SAL is satisfied with your order-scheduling
prototype demo application and has unanimously decided to give you the green light to fully
implement your application. This involves pulling real data from Yelp, issuing orders from SalEats
HQ to drivers in real time over the network, and chaining orders for drivers, much like some other
food delivery application whose name shall not be mentioned.

Restaurant Data:

In this assignment, you will first read in a JSON file (PA3.txt) containing various information
regarding the restaurants and their menus. The JSON format is generally the same as the one we

used in the previous assignment, so feel free to reuse the parser you've built. Here's a sample entry

{ "name": "Momota Ramen House",
"address": "3019 S Figueroa St",
"latitude™: 34.024840,

“longitude™: -118.278060,
"drivers"; 2,
"menu™: [
"black garlic ramen",
"spicy miso ramen"

]



Yelp API:

In addition to reading in data from a hard-coded text file, you will use the Yelp API to retrieve
restaurant data. In other words, the restaurant data (i.e. address, coordinates, etc.) should now be
pulled from this API, and you will only have to read from the text file for the schedule of orders. You
can learn more about the Yelp API here:

https://www.yelp.com/developers/documentation/v3/get started. The data will be returned in a

JSON format. Please keep in mind that there is a limit of 5,000 API calls per day, so do not wait to
start your assignment until the last day. You will also need to generate an API Key, so start the

assignment early to allow enough time for testing.

What To Do:

In this assignment, you will create two different programs - a server and a client. You will
implement a networked delivery system where clients (which represent drivers) receive orders
from the server (which represents the headquarters), and the drivers will deliver the orders to the
appropriate restaurants. If it seems counterintuitive, you can think of it as a backwards food
delivery system, where food is delivered to restaurants. Alternatively, your drivers are delivering
ingredients for the orders to the restaurants.

There will be some concurrency issues since drivers will have to wait on other drivers before
starting the delivery. There will be many ways to design out the program, so it would be wise to

spend some time designing the program before you begin coding.

Aside from the restaurant data, you will need to read in a scheduling information. Below is a layout

of that text file, which contains information for the orders:

0, Momota Ramen House, black garlic ramen
0, Momota Ramen House, spicy miso ramen
0, Slurpin’ Ramen Bar, veggie ramen

3, Daikokuya Little Tokyo, daikoku ramen

3, Daikokuya Little Tokyo, daikoku ramen

9, Daikokuya Little Tokyo, daikoku ramen

9, Tengoku Ramen Bar, chicken ramen

10, Tengoku Ramen Bar, tonkotsu ramen

The first parameter indicates when the order is ready. The second parameter indicates the location

that the order is coming from. The third parameter indicates which food is being delivered.


https://www.yelp.com/developers/documentation/v3/get_started

Server Functionality:

When your server first runs, prompt the user for the name of the schedule file and for their
coordinates. This will be the “home” location that drivers will leave from and return to. Then, the
server should ask the user how many drivers will be dispatched. For example, if the user enters “3,”
that means the server will not send out any orders until 3 clients (aka drivers) have connected to
the server. Afterwards, the server should begin listening on port 3456 for client connections. Every
time a client connects to the server, verify that the connection was made by printing an output from

the server, similar to the sample output below.

Client Functionality:

The client will begin by welcoming the user to the program and prompting the user for the server
hostname and port. If a valid connection is made, the program should let the user know how many
more drivers are needed before the orders are delivered. For example, if there is currently only 1
connection, the client should print a message saying that 2 more drivers are needed before the
orders can be delivered. This number should be inclusive, such that the total number of connected
drivers includes the current driver as well. Once the orders are dispatched, the client will be
responsible for delivering the order to the appropriate restaurants. The client should also be
handling the returned data from the API calls to determine the distances of each restaurant from

the current position.

Drivers can deliver more than one order at a time. Additionally, drivers can deliver orders to
multiple restaurants at a time. Drivers will deliver orders with the shortest distance first. Ou nay
assume that it takes each driver exactly one second to travel one mile, which is the equivalent of a
USAF X-51A Waverider jet traveling at Mach 6. You need to calculate how many seconds it will take
for a driver to deliver food to the next restaurant. So, once an order is delivered, the driver will need
to recalibrate the distance from their current location to the next location and pick the shortest
distance again. This is continued until there are no more orders, in which case the driver will return

to the “home” location that was provided when the server first executed.

A driver should handle as many orders as possible at the moment of dispatch. This means that if
there are 5 orders that all have the same timestamp, one driver should be responsible for all 5
orders. Similarly, if only 1 order is ready at a timestamp, the driver should only deliver 1 order. As
long as there are available drivers, orders should be delivered promptly. If there are no available
drivers, the order will remain in the queue until a driver returns from their delivery. Once a driver
returns, the driver should pick up all of the queued orders (with respect to the current time). Your

program should print upon completing the delivery to a restaurant, and sleep according to the



calculated distance between points. As such, please follow the sample execution below for the

proper output.

Sample Output:

Server Client 1 Client 2

What is the name
of the schedule
file?

missing. txt

That file does
not exist. What
is the name of
the schedule
file?
badformat. txt

That file is not
properly
formatted. What
is the name of
the schedule
file?
schedule. txt

What is your
latitude?
34.02116

What is your
longitude?
-118.287132

How many drivers
will be in
service today?

2

Listening on port
3456.

Waiting for
drivers..

Welcome to SalEats
v2.0!




Connection from
127.0.0.1
Waiting for 1
more driver(s)...

Connection from
127.0.0.1
Starting service.

Enter the server
hostname: localhost
Enter the server
port: 3456

1 more driver is
needed before the
service can begin.
Waiting...

All drivers have
arrived!
Starting service.

[18:06:000] Starting
delivery of black
garlic ramen to
Momota Ramen House.
[18:06:000] Starting
delivery of spicy
miso ramen to Momota
Ramen House.
[18:06:000] Starting
delivery of wveggie
ramen to Slurpin’
Ramen Bar.

[18:06.600] Finished
delivery of black
garlic ramen to
Momota Ramen House.
[18:06.600] Finished
delivery of spicy
miso ramen to Momota
Ramen House.

[18:06.650]
Continuing delivery
to Slurpin’ Ramen

Welcome to SalEats
v2.0!

Enter the server
hostname: localhost
Enter the server
port: 3456

All drivers have
arrived!
Starting service.




Bar.

[18:09:440] Finished
delivery of wveggie
ramen to Slurpin’
Ramen Bar.
[18:09:450] Finished
all deliveries,
returning back to
HQ.

[18:12:200] Returned
to HQ.

[18:12:200] Starting
delivery of tonkotsu
ramen to Daikokuya

[18:15:000] Starting
delivery of daikoku
ramen to Daikokuya
Little Tokyo.
[18:15:000] Starting
delivery of chicken
ramen to Tengoku
Ramen Bar.

[18:09:000] Starting
delivery of daikoku
ramen to Daikokuya
Little Tokyo.
[18:09:000] Starting
delivery of daikoku
ramen to Daikokuya
Little Tokyo.

[18:12:350] Finished
delivery of daikoku
ramen to Daikokuya
Little Tokyo.
[18:12:350] Finished
delivery of daikoku
ramen to Daikokuya
Little Tokyo.
[18:12:360] Finished
all deliveries,
returning back to
HQ.

[18:15:710] Returned
to HQ.

[18:16:000] Starting
delivery of tonkotsu




All orders
completed!

[18:18:250] Finished
delivery of chicken
ramen to Tengoku
Ramen Bar.
[18:18:300]
Continuing delivery
to Daikokuya Little
Tokyo.

[18:22:380] Finished
delivery of daikoku
ramen to Daikokuya
Little Tokyo.
[18:22:390] Finished
all deliveries,
returning back to

HQ.
[18:25:740] Returned
to HOQ.

[18:25:750] All
orders completed!

ramen to Tengoku
Ramen Bar.

[18:19:350] Finished
delivery of tonkotsu
ramen to Tengoku
Ramen Bar.
[18:19:360] Finished
all deliveries,
returning back to

HO.

[18:22:610] Returned
to HOQ.

[18:25:750] All
orders completed!




Starter Code:

Since networking is a challenging concept for some and requires quite a bit of time to digest, we

provide some free code to ease the pressure:

e Code for API requests is provided. However, you will still need to read Yelp's documentation
and come up with the correct query parameters and of course, your own API key.

e (Code for timestamps is included.

e Note that the code provided is not an export and therefore should not be imported. Copy
and paste the files into your directories of choice, modify the import and package lines as
you see fit, then manually include the jar libraries.

Grading Criteria:

The way you go about implementing the solution is not specifically graded, but the output must

match exactly what you see in the execution above.

Networking (20 points)
4 pts. The first client can connect to the server
6 pts. Only the number of clients specified can connect to the server.

10 pts. Server output is correct

DataI/0 (20 points)

6 pts. The schedule file is read appropriately
4 pts. Data is parsed from the Yelp API

10 pts. Client output is correct

Program Execution (60 points)

20 pts. The order of deliveries is correct

20 pts. The timing of deliveries is correct

20 pts. Orders are delivered as expected with no exceptions, crashing, deadlock, starvation, or

freezing.



