
CSCI-201: Principles of Software Development

Fall 2021

PA3: SalEats v2.0

Concepts Covered:

• Networking

• Multi-Threading

• Concurrency Issues

• API Querying

Introduction:

After a stressful and sweaty pitch, the Council of SAL is satisfied with your order-scheduling

prototype demo application and has unanimously decided to give you the green light to fully

implement your application. This involves pulling real data from Yelp, issuing orders from SalEats

HQ to drivers in real time over the network, and chaining orders for drivers, much like some other

food delivery application whose name shall not be mentioned.

Restaurant Data:

In this assignment, you will first read in a JSON file (PA3.txt) containing various information

regarding the restaurants and their menus. The JSON format is generally the same as the one we

used in the previous assignment, so feel free to reuse the parser you've built. Here's a sample entry

 { "name": "Momota Ramen House",

 "address": "3019 S Figueroa St",

 "latitude": 34.024840,

 "longitude": -118.278060,

 "drivers": 2,

 "menu": [

 "black garlic ramen",

 "spicy miso ramen"

]

 }

Yelp API:

In addition to reading in data from a hard-coded text file, you will use the Yelp API to retrieve

restaurant data. In other words, the restaurant data (i.e. address, coordinates, etc.) should now be

pulled from this API, and you will only have to read from the text file for the schedule of orders. You

can learn more about the Yelp API here:

https://www.yelp.com/developers/documentation/v3/get_started. The data will be returned in a

JSON format. Please keep in mind that there is a limit of 5,000 API calls per day, so do not wait to

start your assignment until the last day. You will also need to generate an API Key, so start the

assignment early to allow enough time for testing.

What To Do:

In this assignment, you will create two different programs - a server and a client. You will

implement a networked delivery system where clients (which represent drivers) receive orders

from the server (which represents the headquarters), and the drivers will deliver the orders to the

appropriate restaurants. If it seems counterintuitive, you can think of it as a backwards food

delivery system, where food is delivered to restaurants. Alternatively, your drivers are delivering

ingredients for the orders to the restaurants.

There will be some concurrency issues since drivers will have to wait on other drivers before

starting the delivery. There will be many ways to design out the program, so it would be wise to

spend some time designing the program before you begin coding.

Aside from the restaurant data, you will need to read in a scheduling information. Below is a layout

of that text file, which contains information for the orders:

0, Momota Ramen House, black garlic ramen

0, Momota Ramen House, spicy miso ramen

0, Slurpin’ Ramen Bar, veggie ramen

3, Daikokuya Little Tokyo, daikoku ramen

3, Daikokuya Little Tokyo, daikoku ramen

9, Daikokuya Little Tokyo, daikoku ramen

9, Tengoku Ramen Bar, chicken ramen

10, Tengoku Ramen Bar, tonkotsu ramen

The first parameter indicates when the order is ready. The second parameter indicates the location

that the order is coming from. The third parameter indicates which food is being delivered.

https://www.yelp.com/developers/documentation/v3/get_started

Server Functionality:
When your server first runs, prompt the user for the name of the schedule file and for their

coordinates. This will be the “home” location that drivers will leave from and return to. Then, the

server should ask the user how many drivers will be dispatched. For example, if the user enters “3,”

that means the server will not send out any orders until 3 clients (aka drivers) have connected to

the server. Afterwards, the server should begin listening on port 3456 for client connections. Every

time a client connects to the server, verify that the connection was made by printing an output from

the server, similar to the sample output below.

Client Functionality:
The client will begin by welcoming the user to the program and prompting the user for the server

hostname and port. If a valid connection is made, the program should let the user know how many

more drivers are needed before the orders are delivered. For example, if there is currently only 1

connection, the client should print a message saying that 2 more drivers are needed before the

orders can be delivered. This number should be inclusive, such that the total number of connected

drivers includes the current driver as well. Once the orders are dispatched, the client will be

responsible for delivering the order to the appropriate restaurants. The client should also be

handling the returned data from the API calls to determine the distances of each restaurant from

the current position.

Drivers can deliver more than one order at a time. Additionally, drivers can deliver orders to

multiple restaurants at a time. Drivers will deliver orders with the shortest distance first. Ou nay

assume that it takes each driver exactly one second to travel one mile, which is the equivalent of a

USAF X-51A Waverider jet traveling at Mach 6. You need to calculate how many seconds it will take

for a driver to deliver food to the next restaurant. So, once an order is delivered, the driver will need

to recalibrate the distance from their current location to the next location and pick the shortest

distance again. This is continued until there are no more orders, in which case the driver will return

to the “home” location that was provided when the server first executed.

A driver should handle as many orders as possible at the moment of dispatch. This means that if

there are 5 orders that all have the same timestamp, one driver should be responsible for all 5

orders. Similarly, if only 1 order is ready at a timestamp, the driver should only deliver 1 order. As

long as there are available drivers, orders should be delivered promptly. If there are no available

drivers, the order will remain in the queue until a driver returns from their delivery. Once a driver

returns, the driver should pick up all of the queued orders (with respect to the current time). Your

program should print upon completing the delivery to a restaurant, and sleep according to the

calculated distance between points. As such, please follow the sample execution below for the

proper output.

Sample Output:

Server Client 1 Client 2

What is the name

of the schedule

file?

missing.txt

That file does

not exist. What

is the name of

the schedule

file?

badformat.txt

That file is not

properly

formatted. What

is the name of

the schedule

file?

schedule.txt

What is your

latitude?

34.02116

What is your

longitude?

-118.287132

How many drivers

will be in

service today?

2

Listening on port

3456.

Waiting for

drivers…

Welcome to SalEats

v2.0!

Connection from

127.0.0.1

Waiting for 1

more driver(s)...

Connection from

127.0.0.1

Starting service.

Enter the server

hostname: localhost

Enter the server

port: 3456

1 more driver is

needed before the

service can begin.

Waiting...

All drivers have

arrived!

Starting service.

[18:06:000] Starting

delivery of black

garlic ramen to

Momota Ramen House.

[18:06:000] Starting

delivery of spicy

miso ramen to Momota

Ramen House.

[18:06:000] Starting

delivery of veggie

ramen to Slurpin’

Ramen Bar.

[18:06.600] Finished

delivery of black

garlic ramen to

Momota Ramen House.

[18:06.600] Finished

delivery of spicy

miso ramen to Momota

Ramen House.

[18:06.650]

Continuing delivery

to Slurpin’ Ramen

Welcome to SalEats

v2.0!

Enter the server

hostname: localhost

Enter the server

port: 3456

All drivers have

arrived!

Starting service.

Bar.

[18:09:440] Finished

delivery of veggie

ramen to Slurpin’

Ramen Bar.

[18:09:450] Finished

all deliveries,

returning back to

HQ.

[18:12:200] Returned

to HQ.

[18:12:200] Starting

delivery of tonkotsu

ramen to Daikokuya

[18:15:000] Starting

delivery of daikoku

ramen to Daikokuya

Little Tokyo.

[18:15:000] Starting

delivery of chicken

ramen to Tengoku

Ramen Bar.

[18:09:000] Starting

delivery of daikoku

ramen to Daikokuya

Little Tokyo.

[18:09:000] Starting

delivery of daikoku

ramen to Daikokuya

Little Tokyo.

[18:12:350] Finished

delivery of daikoku

ramen to Daikokuya

Little Tokyo.

[18:12:350] Finished

delivery of daikoku

ramen to Daikokuya

Little Tokyo.

[18:12:360] Finished

all deliveries,

returning back to

HQ.

[18:15:710] Returned

to HQ.

[18:16:000] Starting

delivery of tonkotsu

All orders

completed!

[18:18:250] Finished

delivery of chicken

ramen to Tengoku

Ramen Bar.

[18:18:300]

Continuing delivery

to Daikokuya Little

Tokyo.

[18:22:380] Finished

delivery of daikoku

ramen to Daikokuya

Little Tokyo.

[18:22:390] Finished

all deliveries,

returning back to

HQ.

[18:25:740] Returned

to HQ.

[18:25:750] All

orders completed!

ramen to Tengoku

Ramen Bar.

[18:19:350] Finished

delivery of tonkotsu

ramen to Tengoku

Ramen Bar.

[18:19:360] Finished

all deliveries,

returning back to

HQ.

[18:22:610] Returned

to HQ.

[18:25:750] All

orders completed!

Starter Code:

Since networking is a challenging concept for some and requires quite a bit of time to digest, we

provide some free code to ease the pressure:

• Code for API requests is provided. However, you will still need to read Yelp's documentation

and come up with the correct query parameters and of course, your own API key.

• Code for timestamps is included.

• Note that the code provided is not an export and therefore should not be imported. Copy

and paste the files into your directories of choice, modify the import and package lines as

you see fit, then manually include the jar libraries.

Grading Criteria:

The way you go about implementing the solution is not specifically graded, but the output must

match exactly what you see in the execution above.

Networking (20 points)

4 pts. The first client can connect to the server

6 pts. Only the number of clients specified can connect to the server.

10 pts. Server output is correct

Data I/O (20 points)

6 pts. The schedule file is read appropriately

4 pts. Data is parsed from the Yelp API

10 pts. Client output is correct

Program Execution (60 points)

20 pts. The order of deliveries is correct

20 pts. The timing of deliveries is correct

20 pts. Orders are delivered as expected with no exceptions, crashing, deadlock, starvation, or

freezing.

