
Midterm 2 for MATH 226, section 39559

You have 50 minutes.

You may use any resources (textbook, internet, notes, etc.) except that you
may not consult any other human.

Show your work! Correct answers with no work may not get any credit.

You may use a calculator to aid your computation, but your final answer
should be exact, e.g., π as opposed to 3.14.

Name: Date:

Problem Score

#1 /10

#2 /10

#3 /10

#4 /10

#5 /10

Total /50

(There is an opportunity for up to 2 points of extra credit on problem 5!)



Problem 1: Consider the function f(x, y) := x4 + xy + y4, with domain the open region
D :=

{
(x, y) : y < x+ 1

2

}
.

(a; 5 points) Find the critical points of f on D.

Let (X, Y ) be a critical point. Then

∇f(X, Y ) =
〈
4X3 + Y, 4Y 3 +X

〉
= 〈0, 0〉 ,

which is if and only if
4X3 + Y = 0 ⇐⇒ Y = −4X3,

and
4Y 3 +X = 0 ⇐⇒ X = −4Y 3.

simultaneously. Substituting −4Y 3 in X, we obtain

Y = −4(−4Y 3)3 = 44Y 9 = 28Y 9 ⇐⇒ [(2Y )8 − 1]Y = 0.

Hence either Y = 0 or (2Y )8 = 1, or Y = ±1
2
. When Y = 0, the corresponding X = 0, and

for Y = 1/2 and Y = −1/2, X = −1/2 and X = 1/2, respectively. Hence the critical points
in all of R2 are: (0, 0), (1

2
,−1

2
), and (−1

2
, 1
2
). Note that only (0, 0) and (1

2
,−1

2
) are in D.

(b; 5 points) Classify the critical points you found in (a) as local maxima, local minima,
or saddles.

To classify these critical points, we use the second derivative test. Note that

D(x, y) =
∂2f

∂x2
∂2f

∂y2
−
( ∂2f

∂x∂y

)2
= 144x2y2 − 1.

At (0, 0), we have D(0, 0) = −1 < 0, so the critical point (0, 0) is a saddle. At (1
2
,−1

2
), we

have

D
(1

2
,−1

2

)
=

144

16
− 1 = 8 > 0,

and fxx(
1
2
,−1

2
) = 12(1

2
)2 = 3 > 0. This implies that the point (1

2
,−1

2
) is a point of local

minimum.



Problem 2: Consider the tasks of finding the point on the sphere x2 + y2 + z2 = 1 that are
at the greatest distance (respectively the least distance) from the point (0, 1, 2).

(a; 5 points) Write down a system of equations, whose solutions are the candidates for the
points on this sphere that are the farthest from (respectively, closest to) (0, 1, 2). (Hint: use
Lagrange multipliers, applied to the squared distance function.)

We would like to maximize/minimize the distance which is non-negative, therefore we
might as well maximize/minimize the squared distance function. Note that the squared
distance D(x, y, z) between a generic point (x, y, z) and (0, 1, 2) is

D(x, y, z) = (x− 0)2 + (y − 1)2 + (z − 2)2.

Observe that
∇D(x, y, z) = 〈2x, 2(y − 1), 2(z − 2)〉 .

Since the points (x, y, z) must be on the sphere x2 + y2 + z2 = 1, it translates to the
constraint g(x, y, z) = 1 where g(x, y, z) = x2 + y2 + z2. Hence the system we need to solve
is ∇D = λ∇g together with g = 1, which is

2x = 2λx;

2(y − 1) = 2λy;

2(z − 2) = 2λz;

x2 + y2 + z2 = 1.

(b; 5 points) Find these points, and identify which is the farthest from (0, 1, 2) and which
is the closest.

Observe that when x 6= 0, the first equation gives λ = 1. For this λ, the second equation
becomes −1 = 0, which is impossible. Hence x = 0. This gives y2 + z2 = 1.

Massaging the second and the third equations give the equations y(λ−1) = 1 and z(λ−1) =
2. Since none of the factors y, z, λ−1 can be zero, we may divide the first equation by second,
yielding

y

z
=

1

2
⇐⇒ z = 2y.

Substituting this result in y2 + z2 = 1, we obtain y2 + 4y2 = 1 ⇐⇒ y = ± 1√
5
. Hence the

two solutions are: (0, 1√
5
, 2√

5
), and (0,− 1√

5
,− 2√

5
).

Observe that

D
(

0,
1√
5
,

2√
5

)
= 6− 2

√
5,

and that

D
(

0,− 1√
5
,− 2√

5

)
= 6 + 2

√
5.

Clearly, D(0,− 1√
5
,− 2√

5
) > D(0, 1√

5
, 2√

5
), hence (0, 1√

5
, 2√

5
) corresponds to the point of the

minimum distance, and (0,− 1√
5
,− 2√

5
) corresponds to the point of the maximum distance.



Problem 3: (a; 5 points) Change the order of integration and evaluate the following
integral:

I =

∫ 9

0

∫ 3

√
x

cos
(
y3
)
dy dx.

We can rewrite the domain of integration like so:

D =
{

0 ≤ x ≤ 9,
√
x ≤ y ≤ 3

}
=
{

0 ≤ y ≤ 3, 0 ≤ x ≤ y2
}
.

This allows us to rewrite and compute this integral:

I =

∫ 3

0

∫ y2

0

cos
(
y3
)
dx dy =

∫ 3

0

y2 cos
(
y3
)
dy =

[
1
3

sin
(
y3
)]y=3

y=0
= 1

3
sin 27.

(b; 5 points) Consider the helix C parametrized by r(t) :=
〈
cos t, sin t, t

〉
, 0 ≤ t ≤ 2π.

Compute the following integral: ∫
C

z ds.

We have r′(t) = 〈− sin t, cos t, 1〉, so |r′(t)| =
√

2. We therefore have:

I =

∫
C

z ds =

∫ 2π

0

√
2t dt =

[
1
2

√
2t2
]2π
0

= 2
√

2π2.



Problem 4: Consider the region E below the cone z =
√
x2 + y2, within the cylinder

x2 + y2 = 16, and above the xy-plane. Consider the following integral, which represents the
volume of E:

I :=

∫∫∫
E

1 dV.

(a; 5 points) Rewrite I as an iterated integral in Cartesian coordinates. (You do not have
to evaluate this iterated integral.)

OK:

I =

∫ 4

−4

∫ √16−x2
−
√
16−x2

∫ √x2+y2

0

1 dz dy dx.

(b; 5 points) Rewrite I as an iterated integral in cylindrical coordinates. (You do not have
to evaluate this iterated integral.)

OK:

I =

∫ 4

0

∫ 2π

0

∫ r

0

r dz dθ dr.



Problem 5 (10 points): Consider the following vector field:

F(x, y) :=
〈
y + 2xex

2+y2 , x+ 2yex
2+y2

〉
.

(a; 2 points of extra credit) Without computing a potential function, argue carefully for
why F is conservative.

Let P (x, y) = y + 2x exp(x2 + y2), and Q(x, y) = x+ 2y exp(x2 + y2). Evidently these are
smooth functions on R2, they have partial derivatives of every order on R2. Moreover,

∂P

∂y
= 1 + 4xy exp(x2 + y2) =

∂Q

∂x

on all of R2, and since R2 is simply connected, F(x, y) must be a conservative vector field
by Theorem 6 of 13.3

(b; 5 points) Find a potential function for F, i.e. a function f satisfying F = ∇f . Let

f(x, y) be a potential function. Then P = fx and Q = fy. Thus

f(x, y) =

∫
P (x, y) dx+ g(y) = xy + exp(x2 + y2) + g(y),

for some function g(y). Partial differentiating the both sides the equation with respect y, we
obtain

fy(x, y) = Q(x, y) = x+ 2y exp(x2 + y2) + g′(y) = x+ 2y exp(x2 + y2).

This implies g′(y) = 0, which is if and only if g(y) = K for some constant K. Hence

f(x, y) = xy + exp(x2 + y2) +K.

(c; 5 points) Evaluate the line integral
∫
C
F · dr, where C is the curve parametrized by

r(t) :=
〈√

log t cos t,
√

log t sin t
〉
, π ≤ t ≤ 3π

2
.

Since the vector field is conservative, we only need to care about the starting and the
ending points of the path. Observe that

f(r(t)) = log t sin t cos t+ exp(log t sin2 t+ log t cos2 t) +K =
1

2
log t sin 2t+ t+K.

Here, used the identity exp(log x) = x.
By the fundamental theorem for line integrals,∫

C

F · dr =

∫
C

∇f · dr = f(r(3π/2))− f(r(π))

=
(1

2
log

3π

2
sin 3π +

3π

2
+K

)
−
(1

2
log π sin 2π + π +K

)
=
π

2
.


