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CKaSWeU   10:   VecWRUV   aQd   WKe   GeRPeWU\   RI   SSace  
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DLVWaQce   FRUPXOa:                      SSKeUe:   ¬√(Ƌ[) Ƌ\) Ƌ])2 + ( + ( 2 [ ) \ ) ] ) ¬( h 2 + ( k 2 + ( l 2 = r2  

VecWRU   MaJQLWXde:   _Y_                         VecWRU   AddLWLRQ/SXbWUacWLRQ: ¬= √v12 + v22 + v32  
 
UQLW   VecWRU:   
 
VecWRU   MXOWLSOLed   b\   a   ScaOaU:  
k * Y   =    ⟨ ⟩ v , kv , kvk 1 ¬ 2 ¬ 3  

DRW   PURdXcW:   Y   �   Z    =    v 1 w 1    +    v 2 w 2    +    v 3 w 3    =    _Y__Z_ os(Ƨ)c   
 

ScaOaU   PURMecWLRQ:    comp a b    =                              VecWRU   PURMecWLRQ:    pUoj a b    = ¬a| |
a b a ¬

a| |2
a b

 

 
CURVV   PURdXcW:   a    î    b    =  =   ⟨ a 2 b 3    ±    a 3 b 2 ,    a 3 b 1    ±    a 1 b 3 ,    a 1 b 2    ±    a 2 b 1 ⟩   
 
 
MaJQLWXde:   _a    î    b _   =   _ a__b_                          TULSOe   PURdXcW:    VolXme   of   paUallelipiped   =   _ a   �    ( b    î    c )_ in(Ƨ)s  

LLQeV  
VecWRU   FRUP:   U    =    U 0    +    t Y  
 
PaUaPeWULc   FRUP:    x    =    x 0    +    at           y    =    y 0    +    bt           ]    =    ] 0    +    ct  
 
S\PPeWULc   FRUP:   a

[ [0 = b
\ \0 = c

] ]0  

POaQeV  
VecWRU   FRUP:   Q   �    ( U U 0 )   =   0 ¬  
 
ScaOaU   FRUP:    a([ [ 0 )   +   b(\ \ 0 )   +c(] ] 0 )   =   0   ⇒   a[   +   b\   +   c]   =   d ¬ ¬ ¬  

AUc   LeQJWK:   
 
UQLW   TaQJeQW   VecWRU:   



 

SRPe   TKLQJV   WR   KeeS   LQ   MLQd  
Ɣ TZo   YecWoUV   aUe   oUWhogonal   iff    Y   �   Z   =    0  
Ɣ TZo   YecWoUV   aUe   paUallel   if    Y    iV   a   VcalaU   mXlWiple   of    Z    (oU    Y    î    Z    =     0)  
Ɣ Y    î    Z    iV   oUWhogonal   Wo   boWh    Y    and    Z  
Ɣ ThUee   YecWoUV   aUe   coplanaU   iff   WheiU   WUiple   pUodXcW   iV   0  
Ɣ To   ZUiWe   Whe   eqXaWion   foU   a   line,   \oX   need   a    SRLQW    and   a    dLUecWLRQ    YecWoU  
Ɣ To   ZUiWe   Whe   eqXaWion   foU   a   plane,   \oX   need   a    SRLQW    and   a    QRUPaO    YecWoU  

 
TLSV   IRU   PaUaPeWeUL]LQJ   CXUYeV  

Ɣ ReZUiWe   eqXaWionV   iVolaWing   one   YaUiable   in   WeUmV   of   anoWheU,   When   VXbVWiWXWe   foU    t  
Ɣ PolaU   cooUdinaWeV   aUe   common   foU   VhapeV   like   ellipVeV   and   ciUcleV   ( ,   ) ¬cos(t) ¬[ = a ¬sin(t)\ = b  
Ɣ CXUYeV   can   be   paUameWUi]ed   in   an   infiniWe   nXmbeU   of   Za\V,   bXW   Vome   Zill   make   \oXU   calcXlaWionV  

eaVieU   Whan   oWheUV  
 
SNeWcKLQJ   QXadULc   SXUIaceV  

Ɣ If   Whe   eqXaWion   onl\   haV   WZo   YaUiableV,   dUaZ   Whe   cXUYe   on   WhoVe   WZo   a[eV,   and   When   VWUeWch   Whe  
image   along   Whe   Uemaining   a[iV   Wo   obWain   Whe   3D   Vhape.  

○ E[.   SkeWch   Whe   VXUface   [ 64 2 + \2 = 1  
 
 
 
 
 
 
 
 
 
 
 

Ɣ DUaZ   WUaceV   of   Whe   gUaph   b\   holding   one   YaUiable   conVWanW   and   gUaphing   Whe   Uemaining   WZo  
YaUiableV   in   WZo   dimenVionV.   RepeaW   XnWil   \oX   can   deWeUmine   Whe   Vhape   of   Whe   gUaph.   YoX   ma\  
need   Wo   change   Zhich   YaUiable   iV   held   conVWanW   Wo   geW   a   cleaU   picWXUe   of   Whe   Vhape.  

○ E[.   SkeWch   Whe   VXUface   \ = ]2 + [2  
 
 
 
 
 
 
 
 
 
 

 



 

PUacWLce   PURbOePV  
1. UConn   Fall   2008   MidWeUm   1   Q1  

a. GiYe   a   YecWoU   eqXaWion   of   Whe   line   conWaining   Whe   poinWV   (1,   í3,   2)   and   (4,   1,   0).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b. Find   Whe   inWeUVecWion   of   Whe   line   ZiWh   Whe   plane   0.[ + \ + ] = 1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

c. IV   Whe   poinW   (10,   9,   í4)   on   WhiV   line?  
 
 
 
 
 
 
 
 
 

 



 

2. USC   Fall   2016   Final   Q1  
  ConVideU   WZo   planeV,   P 1 :     and   P 2 :   ,   and   a   poinW    Q    =   (3,   4,   1). 7[ + \ = 2 [ 02 + ] = 1  

a. WUiWe   an   eqXaWion   of   Whe   plane   WhaW   paVVeV   WhUoXgh   Whe   poinW    Q    and   iV   peUpendicXlaU  
Wo   Whe   planeV   P 1    and   P 2 .  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

b. WUiWe   a   paUameWUic   eqXaWion   of   Whe   line   WhaW   paVVeV   WhUoXgh   Whe   poinW   Q   and   iV   paUallel  
Wo   Whe   planeV   P 1    and   P 2 .  
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 

 
 

 

 



 

3. UConn   Fall   2008   MidWeUm   1   Q2  
FoU   Whe   cXUYe    U ( t )   =   ⟨ ⟩,   : t , 1 , t ¬2 3 ¬ t3 ¬ 2 3 ¬t � 0  

a. RepaUameWUi]e   Whe   cXUYe   ZiWh   UeVpecW   Wo   aUc-lengWh,   VWaUWing   aW    t    =   0   and   moYing   in  
diUecWion   of   incUeaVing    t.  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

b.   Find   Whe   diVWance   along   Whe   cXUYe   fUom   (2,   0,   í2)   Wo   (16,   í7,   16).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

4. ColgaWe   SpUing   2003   PUacWice   E[am   1   Q7  
LeW    Y    =   2    L    +    a    M   +     a 2     N    and    Z    =   (2 a 3)    L   +   M   +   N : ¬  

a. FoU   Zhich   YalXeV   of    a    aUe   Whe   YecWoUV   peUpendicXlaU?  
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 

 
b. WUiWe    Y    aV   Whe   VXm   of   a   YecWoU   paUallel   Wo    Z    and   a   YecWoU   peUpendicXlaU   Wo    Z    Zhen   

a    =   0   (HinW:   XVe   YecWoU   pUojecWion!).  
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 



 

CKaSWeU   11:   PaUWLaO   DeULYaWLYeV  
IPSRUWaQW   FRUPXOaV  

 
SRPe   TKLQJV   WR   KeeS   LQ   MLQd:  

Ɣ The   gUadienW   YecWoU   VhoZV   Whe   diUecWion   of   Whe   ma[imXm   incUeaVe   of   a   fXncWion  
Ɣ The   gUadienW   YecWoU   iV   noUmal   Wo   leYel   VXUfaceV   and   conWoXU   lineV  
Ɣ BeZaUe   of   diYide   b\   ]eUo   eUUoUV   Zhen   VolYing   LagUange   mXlWiplieU   pUoblemV!  

 
 
 
 
 
 
 
 
 

 

TaQJeQW   POaQe:   
 
LLQeaU   ASSUR[LPaWLRQ:   
 
TRWaO   DLIIeUeQWLaO:   

IPSOLcLW   DLIIeUeQWLaWLRQ:  
 

GUadLeQW:                                                       DLUecWLRQaO   DeULYaWLYe:  

 
SecRQd   DeULYaWLYeV   TeVW:   
 

Ɣ If   D   >   0   and   iV   a   local   minimXm ,f [[ ! 0 (a, ) ¬f b  
Ɣ If   D   >   0   and   iV   a   local   ma[imXm ,f [[ < 0 (a, ) ¬f b  
Ɣ If   D   <   0,   iV   a   Vaddle   poinW (a, ) ¬f b  

S\VWeP   RI   ETXaWLRQV   IRU   CULWLcaO   PRLQWV   RQ   a   CRQVWUaLQW:  
 



 

PUacWLce   PURbOePV   
5. ColgaWe   SpUing   2003   PUacWice   E[am   2   Q10  

SXppoVe    f    iV   a   diffeUenWiable   fXncWion   VXch   WhaW  
(1, ) ,f 3 = 1    and    (1, ) ,f [ 3 = 2 (1, ) .f \ 3 = 4  

a. Find   a   YecWoU   in   Whe   plane   WhaW   iV   peUpendicXlaU   Wo   Whe   conWoXU   line     aW   Whe   poinW ([, )f \ = 1  
(1,   3).  

 
 
 
 
 
 
 
 
 

b. AW   Whe   poinW   (1,   3),   ZhaW   iV   Whe   UaWe   of   change   of    f    in   Whe   diUecWion    L   +   M ?  
 
 
 
 
 
 
 
 
 
 

6. MIT   OpenCoXUVeWaUe  
LeW     Find aW   Whe   poinW   \], ¬[ v, ¬] .w = [ ¬ = u2 ¬ = u2 + v2 ȶu

ȶw u, ) 1, ).( v = ( 2  
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 

 



 

7. UConn   Fall   2008   MidWeUm   2   Q2  
ConVideU   Whe   VXUface  

x y zx) yz � ¬2 2 � + ( 2 x�  1  
a. Find   Whe   eTXaWion   of   Whe   WangenW   Slane   Wo   WhiV   VXUface   aW   Whe   SoinW   (2,   0,   2).  

 
 
 
 
 
 

 
 
 

b. ASSUo[imaWe   Whe    y    YalXe   of   Whe   SoinW   on   Whe   VXUface   ZheUe     and   .0�x  2 .��.z  1  
 
 
 

 
 
 
 
 
 
 
 

 
8. MIT   OSenCoXUVeWaUe  

Find   Whe   ma[imXm   and   minimXm   YalXeV   of   on   Whe   XniW   ciUcle. (x, ) yf y  x2 + x + 2 2  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



 

9. USC   SpUing   2015   Final   Q3  
  ConVideU   Whe   fXncWion    f    WhaW   iV   giYen   b\  

([, ) [\ ¬f \ = \3 2 + [2  
a. Find   all   Whe   cUiWical   poinWV   of    f .  

 
 
 
 
 
 
 
 
 
 

b. ClaVVif\   each   cUiWical   poinW   \oX   foXnd   aboYe   (if   \oX   can)   aV   a   local   ma[imXm,   local  
minimXm,   oU   Vaddle   poinW.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

c. DoeV    f    haYe   a    global    ma[imXm   on   Whe   plane?   If   iW   doeV,   VWaWe   iWV   YalXe   and   ZheUe   iW   iV  
aWWained.   If   noW,   e[plain   Zh\   noW.  

 
 
 
 
 
 

d. DoeV    f    haYe   a    global    minimXm   on   Whe   plane?   If   iW   doeV,   VWaWe   iWV   YalXe   and   ZheUe   iW   iV  
aWWained.   If   noW,   e[plain   Zh\   noW.  
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12.1: Double Integrals Over Rectangles

Iterative integrals can be applied to computing volumes for solids in 3 dimensions.
We can define the bounds of a rectangle R = [a, b] (bounds of x) and [c, d] (bounds
of y) as a rectangle R. The function f :R! R is considered the height of the solid
f(x, y). We can determine the volume of the solid bounded below by the rectangle R
and above by the function f by double integration:

ZZ

R

f(x, y)dA =

ZZ

R

f(x, y)dxdy

We can think of this double integral similar to a double Riemann sum from Calculus
I, where we can approximate the volume under the graph of f by rectangles.
We can compute double integrals as iterated integrals. Using the above example to
calculate the volume of the solid under f , we can compute:

ZZ

R

f(x, y)dxdy =

Z b

a

"Z d

c

f(x, y)dy

#
dx

An important property of double integrals is Fubini’s theorem - that is, we can
change the order of integration and the result will be equivalent. This is especially
helpful when one of the integrals is too di�cult to be computed by hand. By switching
the order, it’s possible to produce an easier integral to evaluate.

ZZ

R

f(x, y)dA =

Z b

a

"Z d

c

f(x, y)dy

#
dx =

Z d

c

"Z b

a

f(x, y)dx

#
dy

It is also possible to separate out the integrals if the functions are not dependent on
each other. For example, if we can write f(x, y) as g(x) and h(y), then:

ZZ

R

f(x, y)dA =

ZZ

R

g(x)h(y)dA =

Z b

a

g(x)dx

Z d

c

h(y)dy
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12.2: Double Integrals Over General Regions

Double integrals can be extended to more general regions in the Cartesian plane. There
are two types of general regions over which we can integrate:

1. Type 1 region: the region is bounded on the left and ride by x = a and x = b
respectively, and bounded on the bottom and top by y = g1(x) and y = g2(x)
respectively. Notice that this is exactly the same as rectangular regions, but we
now assume that y = g(x) can be any function, and not just a straight line. This
can computed as follows:

ZZ

R

f(x, y)dA =

Z b

a

Z g2(x)

g1(x)

f(x, y)dy dx

2. Type 2 region: similar, but the region is now bounded on the left and right by
x = h1(y) and x = h2(y) respectively, and bounded on the bottom and top by
y = c and y = d respectively. We change the order of integration in this case:

ZZ

R

f(x, y)dA =

Z d

c

Z h2(y)

h1(y)

f(x, y)dx dy

We can also apply Fubini’s theorem to computing integrals in a di↵erent order.
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12.3 : Double Integrals in Polar Coordinates

Our regions aren’t restricted to functions of x and y; sometimes it is easier to describe
the region of interest by its bounds in polar coordinates in order to compute its double
integral. Recall 3 simple equations we can use to convert rectangular coordinates to
polar coordinates, and vice versa:

x = r cos ✓

y = r sin ✓

x2 + y2 = r2

where r represents the radius/distance from a point to the origin and ✓ represents
the angle between r and the x-axis. So we can write our rectangular points P (x, y)
as P (r, ✓). This changes our bounds of integration and we rewrite our function of
integration in terms of r cos ✓ and r sin ✓ for x and y respectively:

dA = r dr d✓ = r d✓ dr
ZZ

R

f(x, y) dA =

Z b

a

Z �

↵

f(r cos ✓, r sin ✓)r d✓dr =

Z �

↵

Z b

a

f(r cos ✓, r sin ✓)r drd✓

where our bounds for r are the constants (a, b) and our bounds for ✓ are the angles
(↵, �) in radians.

Don’t forget the Jacobian factor r!
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12.4: Applications of Double Integrals

There are many physics-based applications of double integrals that extend beyond
simply computing volumes of solids in 3 dimensions.

Density and Mass: we can determine the mass of an object if we integrate
the density function of the object over a general region, as such:

m =

ZZ

D

⇢(x, y) dA

where the density ⇢ is represented as a function of the point (x, y).

Moments and Center of Mass: we can also calculate the individual mo-
ments about the x-axis and y-axis in order to determine the center of mass of a lamina
with variable density (the density is not constant throughout):

Mx =

ZZ

D

y⇢(x, y) dA, My =

ZZ

D

x⇢(x, y) dA

to compute the moments about the x and y axis respectively. From these double
integral we can calculate the center of mass (x, y) of the lamina over the region D with
density function ⇢(x, y) and mass m:

x =
My

m
=

1

m

ZZ

D

x⇢(x, y) dA, y =
Mx

m
=

1

m

ZZ

D

y⇢(x, y) dA

Finally, we can compute the moments of inertia of lamina/disk about the x- and y-axis
respectively:

Ix =

ZZ

D

y2⇢(x, y) dA, Iy =

ZZ

D

x2⇢(x, y) dA

and the polar moment of inertia/moment of inertia about the origin is:

I0 =

ZZ

D

(x2 + y2)⇢(x, y) dA

where
I0 = Ix + Iy
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12.5: Triple Integrals

The same way we define integrals of single and double variable functions, we can do
the same for three variable functions. Let’s define a simple box B as the product of
x, y, z. If we want to take the triple integral of the function f over a bounded region
in 3 dimensions E, then we define this integral as:

ZZZ

E

f(x, y, z) dV =

Z s

r

Z d

c

Z b

a

f(x, y, z) dxdydz

for the box B defined as [a, b]⇥ [c, d]⇥ [e, f ].

If we can write each of three functions as a function of one variable, then we
can separate them into three individual single integrals:

ZZZ

E

f(x)g(y)h(z) dV =

Z s

r

h(z) dz

Z d

c

g(y) dy

Z b

a

f(x) dx

Additionally, properties of double and single integrals apply to triple integrals. We
can change the order of the integrals (6 orders of integration) and take constants out
of the integral.

More generally, we can write two of the three variables of integration as func-
tions of other variables. This is what we did for Type I and Type II regions for double
integrals (f(y), g(x)) for the bounds of the region. Now, we have a bounded region in
R3 where we can write our bounds of integration in terms of the other variables:

Z x=b

x=a

Z y=g2(x)

y=g1(x)

Z z=u2(x,y)

z=u1(x,y)

f(x, y, z) dzdydx

is one order of integration. Notice that the bounds for z are functions of x, y, the
bounds for y are functions of x, and the bounds for x are constants. This is the most
challenging part of triple integral problems: setting up the bounds of integration over
the region E.

Perhaps the above order is di�cult to compute, so we can rearrange the order
of integration to describe the region.
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12.6: Triple Integrals in Cylindrical Coordinates

Recall our conversion of rectangular coordinates to polar coordinates in 12.3. We can
extend this system to triple integrals by use of cylindrical coordinates:

x = r cos ✓ y = r sin ✓ r2 = x2 + y2 tan ✓ =
y

x

To convert from rectangular to cylindrical, we can use:

x = r cos ✓ y = r sin ✓ z = z

What would our triple integral look like in cylindrical coordinates? Suppose we can
describe our region E conveniently in cylindrical coordinates for our function f(x, y, z).
We would integrate over z, r, ✓ respectively, as such:

Z �

↵

Z h2(✓)

h1(✓)

Z u2(r cos ✓,r sin ✓)

u1(r cos ✓,r sin ✓)

f(r cos ✓, r sin ✓, z) r dzdrd✓

Note that we again use a Jacobian factor r when computing the triple inte-
gral in cylindrical coordinates, based on the polar coordinate system. The
bounds of the integration are ✓ over [↵, �], r over [h1(✓), h2(✓)], and z over
[u1(r cos ✓, r sin ✓), u2(r cos ✓, r sin ✓)].

That’s it! We can apply similar techniques in converting from rectangular co-
ordinates to polar coordinates for double integrals to using cylindrical coordinates for
triple integrals.
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12.7: Spherical Coordinates

We now arrive at the last coordinate system for iterative integration. So far we’ve
covered rectangular coordinates in double and triple integrals, polar coordinates in
double integrals, and cylindrical coordinates in triple integrals.

Now we cover spherical coordinates in triple integrals. Spherical coordinates
are the most complex, and we define a whole new set of equations to convert from
rectangular to spherical coordinates.

Here we define spherical coordinates (⇢,�, ✓) using the following equations:

x = ⇢ sin� cos ✓, y = ⇢ sin� sin ✓, z = ⇢ cos�

for 0  �  ⇡ and ⇢ � 0. From these equations we can also derive:

x2 + y2 + z2 = ⇢2

And when we evaluate triple integrals, we have
ZZZ

E

f(⇢ sin� cos ✓, ⇢ sin� sin ✓, ⇢ cos�)⇢2 sin� dV
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13.1: Vector Fields

In this section we introduce the concept of vector fields, and from here we can build
upon our foundational knowledge of vector fields to apply essential vector calculus
theorems that you may have heard of (Stokes Thm, Green’s Thm, etc) to compute
integrals.

Essentially, a vector field is a function that assigns a point in space a vector
(magntiude and direction) that we denote F. For example, we can have a velocity or
force vector field in which each point (x, y) is assigned a velocity or force vector.

We defined the gradient vector rf in Chapter 11. If we let

f(x, y) = fx(x, y)i+ fy(x, y)j

then we can let rf be the gradient vector field of f . Additionally, we can define a
conservative vector field if there exists a function f such that

F = rf

in other words, the vector field F is the gradient of some function f . We define f for
conservative vector fields as the potential function of F.
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13.2: Line Integrals

Previously we defined integrals over general regions over some interval [a, b]. Now we
can extend integrals to apply to smooth, parameterized curves that are defined as
some function of a parameter e.g. t.

For some curve C, we can only take its line integral if it is smooth and pa-
rameterized with respect to some one-to-one vector function r(t). The curve can only
be smooth if r0(t) is continuous on the interval [a, b].

If f is a continuous function on a smooth curve C, then the line integral of f
over C is:

Z

C

f(x, y) ds =

Z b

a

f(x(t), y(t))

r
(
dx

dt
)2 + (

dy

dt
)2 dt =

Z b

a

f(r(t))|r’(t)| dt

Recall that the second part of the integral is the length of the curve C that we defined
in Chapter 10. The line integral is not dependent on the paramterization of the curve.

We can also define line integrals in 3D space, exactly the same as we define
for the Cartesian plane with one extra variable:

Z

C

f(x, y, z) ds =

Z b

a

f(x(t), y(t), z(t))

r
(
dx

dt
)2 + (

dy

dt
)2 + (

dz

dt
)2 dt =

Z b

a

f(r(t))|r’(t)| dt

Finally, we can define line integrals in terms of vector fields: for some vector field F

and smooth curve C, the line integral of F along C is:
Z

C

F · dr =
Z

C

F(r(t)) · r0(t) dt

where F(r(t)) is simply F(x(t), y(t), z(t)).
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13.3: FTC for Line Integrals

Suppose we have a smooth curve C parameterized by a vector function r(t). If f is
di↵erentiable and its gradient rf is on C, then:

Z

C

rf · dr = f(r(b))� f(r(a))

which essentially says that we can compute a line integral of a conservative vector
field with only the endpoints of the curve. If the curve C is closed, then the above
line integral evaluates to 0.

One important theorem of the FTC for line integrals is that of path indepen-
dence: for a field F on domain D, F is path independent if and only if

Z

C

F · dr = 0

for every closed curve C in D. Additionally, if F is path independent, then we can
say that F is a conservative vector field s.t. a potential function exists: rf = F.

We can determine whether a vector field is conservative or not as well, by the
following theorems. F(x, y) = P (x, y)i + Q(x, y)j is a vector field on a simply-
connected region D. If the following partial derivatives are defined:

@P

@y
=

@Q

@x
throughout D

then F is conservative.

13.4: Green’s Theorem

This is the first of our big three vector calculus theorems! We need only define Green’s
Theorem here. Let C be a positively oriented, piecewise-smooth, simple closed curve
in the plane and let D be the region bounded by C. If Pand Q have continuous partial
derivatives on an open region that contains D, then:

Z

C

P dx+Q dy =

ZZ

D

(
@Q

@x
� @P

@y
) dA

where
F =< P,Q >
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13.5: Curl and Divergence

Curl and divergence are basic operations on vector fields that are essential for un-
derstanding problems in physics and engineering. Let’s say we have a vector field F

defined by its x, y, z components P,Q, and R respectively, each with first-order partial
derivatives. Then we can define the curl of the vector field F as:

curl F = (
@R

@y
� @Q

@z
) i+ (

@P

@z
� @R

@x
) j+ (

@Q

@x
� @P

@y
) k

Note that this is a vector function such that the curl of the vector field F is always a
vector.

An important operator to know is the di↵erential ”del” operator r, defined as
follows:

r =
d

@x
i+

d

@y
j+

d

@z
k

We can relate the del operator to curl by taking the cross of r and F to produce the
curl:

curl F = r⇥ F

Another key theorem is that the curl of a gradient vector field is 0:

curl(rf) = 0

Thus, it follows that a conservative vector field will have a curl of 0, since there exists
a potential function such that F = f . Recall from the earlier section on conservative
vector fields that, for a 2-D vector field, we would simply need to show that

@P

@y
=

@Q

@x

We simply extend this relationship to three dimensions when we work with a vector
field with P,Q,and R components.

We can understand curl in the context of rotations and fluid flow. If we have
a vector field F that represents the velocity of a fluid, then particles at (x, y, z) tend
to rotate about the axis that points in the direction of the curl. If the curl is 0
(conservative), then the fluid is free from rotations at that point.



MATH 226/229
Final Exam Review SI Leaders: Kaylee and Bryson

Now we define the divergence of a vector field as a new operator, which di↵ers from
the curl in that it is a scalar function:

div F =
@P

@x
+

@Q

@y
+

@R

@z

div F is a scalar, not a vector field, which can also be computed as a dot product:

div F = r · F

One key property of divergence:

div curl F = 0

for all vector fields.

Divergence can be understood in the context of fluid flow: if we have a vector
field F that represents the velocity of a liquid, the divergence of F gives the net rate
of change of the mass of fluid flowing from a point (x, y, z) per unit volume, or the
tendency of the fluid to diverge from that point.
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13.6: Parametric Surfaces

Recall that we can parameterize a space curve by a vector function r(t). We can
extend this parameterization to surfaces in 3 dimensions, such that we have a function

r(u, v) = x(u, v) i+ y(u, v) j+ z(u, v) k

that is a function from the region D on the uv plane to R3. By using r(u, v), we can
say that a surface S is a parameterized surface defined by r(u, v), which maps the uv
plane to a surface in R3.

Additionally, we can define tangent vectors and tangent planes in 3 dimensions. If
the parameterization of S is defined by r(u, v), then the tangent vectors of S are:

ru =
@r

@u
=

@x

@u
i+

@y

@u
j+

@z

@u
k

rv =
@r

@v
=

@x

@v
i+

@y

@v
j+

@z

@v
k

Given the tangent vectors to S at some point (u0, v0), we can find the tangent plane
through that point by using the cross product of ru and rv.

Finally, we can use the parameterization of a surface S to compute its surface
area.

The area of patch on the surface on the right side can be approximated by
taking the magnitude of the cross product of its tangent vectors on the Cartesian
plane:

A(S) =

ZZ

D

|ru ⇥ rv| dA

for a region D in R2 and paramterization r(u, v).
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Now let’s say we want to find the surface area for the graph of a function:

x = x, y = y, z = f(x, y)

If we take |rx ⇥ ry|, we will see that this simplifies to

q
1 + f 2

x + f 2
y

So we have

A(S) =

ZZ

D

q
1 + f 2

x + f 2
y dA
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13.7: Surface Integrals

If we let S be a smooth surface parameterized by r(u, v), and define f(x, y, z) as a
continuous function on S. Here we can define the integral of f over S as

ZZ

S

f(x, y, z) dS =

ZZ

D

f(r(u, v))|ru ⇥ rv| dA

Now let’s say we have a graph g(x, y) parameterized by

x = x, y = y, z = g(x, y)

Then we can rewrite the surface integral as
ZZ

S

f(x, y, z) dS =

ZZ

D

f(x, y, g(x, y))
q

1 + f 2
x + f 2

y dA

For graphs, we can also define oriented surfaces and the associated normal vector. A
positively oriented closed surface is one in which its normal vectors point outward
(away from the surface). We can define the unit normal vector as

n =
� @g

@x i� @g
@y j+ k

p
1 + g2x + g2y

Thus it follows that the normal vector in the opposite direction is -n.

Finally, and most importantly, we have surface integrals across vector fields.
Let the surface S have parameterization r(u, v) defined on D and the vector field F

is defined on S. Then the surface integral of F over S is
ZZ

S

F · dS =

ZZ

S

F · n dS =

ZZ

D

F(r(u, v)) · (ru ⇥ rv) · dA

Also defined as the flux of F across S.



MATH 226/229
Final Exam Review SI Leaders: Kaylee and Bryson

13.8: Stokes’ Theorem

Stokes’ Theorem is actually simply a generalization of Green’s Theorem, which we
studied earlier. Instead of relating the double integral over a plane region to a line
integral over its boundary curve, we now relate the surface integral over the surface
S to the line integral of the boundary curve around S.

Let S be an oriented piecewise-smooth surface that is bounded by a simple,
closed, piecewise-smooth boundary curve C with positive (outward) orientation. Let
Fbe a vector field whose components have continuous partial derivatives on an open
region in R3 that contains S. Then

Z

C

F · dr =
ZZ

S

curl F · dS

13.9: Divergence Theorem

The Divergence Theorem is similar to Stokes’ Theorem in that it also relates an
integral of the derivative of a given function over a region to the integral of the
function over its boundary. We can generalize this theorem to higher dimensions.

Let’s define a simple solid region E such that it is a closed surface with posi-
tive/outward orientation (the normal vector n points away from the region). If we let
a surface S be the boundary of the region E with outward orientation, and we define
a vector field F whose continuous partials exist, then

ZZ

S

F · dS =

ZZZ

E

div F dV
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Let E be the region consisting of those points (x, y, z) in the first octant (where x �
0, y � 0, z � 0) and under the paraboloid of equation z = 2x22y2. Find the bounds of
integration in the following order:

ZZZ

E

f(x, y, z) =

ZZZ
f(x, y, z) dydxdz

Evaluate the following integral:

Z 4

0

Z 2

p
y

cos(x3) dxdy
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Evaluate the following integral: ZZZ

E

x2 dV

where E is the solid bounded by y =
p
9� x2 � z2 and y =

p
16� x2 � z2 and the xz plane.
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Suppose a particle of mass M is located at the origin and a particle of mass m is located
at the point (x, y, z). The gravitational force between the two particles is given by

F =<
�mMgx

(x2 + y2 + z2)3/2
,

�mMgy

(x2 + y2 + z2)3/2
,

�mMgz

(x2 + y2 + z2)3/2
>

• Show that F is conservative

• Find the potential function of F

• A second particle moves from (1,2,3) to (2,1,0) along the curve C parameterized by

r(t) =< t+ et, 1 + sin(
⇡t

2
), 3� 3t >

for 0  t  1. Evaluate
R
C F · dr
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Evaluate I

C

(x4)dx+ (xy)dy

where C is given by the lines from (1,0) to (2,0), from (2,0) to (0,1), and from (0,1) to (1,0).
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Consider the surface S with upwards orientation defined as the open paraboloid
z = 4� x2 � y2 for 3  z  4. Find the surface area of S.
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Use any method to find the line integral:
I

C

F · dr

where F = y i+ x2
j+ xz3 k, and C is the triangle with vertices (0, 0, 3), (2, 0, 3)

and (0, 8, 3), oriented by the ordering of the points.
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Let E be the three-dimensional region cut from the first octant by the cylinder x2+y2 = 4
and the plane z = 3, and let S be the bounding surface of E. The vector field F is:

F = (6x2 + 2xy) i+ (2y + x2z) j+ (4x2y3) k

Find the flux of F out of the surface S:
ZZ

S

F · dS

Good luck with the final exam, you got this!!

Food place of the week! - Din Tai Fung!


