OH today: 2-3.

Fall 12, #7 Find absolute man, min of f = 3xy - 6x - 3y +7 on triangle w/ vertices (0,0), (3,0), (0,5).

C, GLOBAL MIN-

1. Values @ oritical pts in K?

$$f(0,2) = 1$$

2. Extreme on boundary?

· C .: (+) = <0, +7, 0 = + < 5.

g(t) := (f(s,(t))) = f(o,t) = -3t+7

$$g(5) = 7$$
 $g(5) = -8$

 $C_{2} \cdot C_{2} = \langle + \rangle = \langle + \rangle, \quad 0 \leq t \leq 3.$

 $g_1(t) = f(\underline{r}_1(t)) = -6t+7$, $0 \le t \le 3$.

$$q_{2}^{(0)} = 7$$

$$q_{2}^{(3)} = -11$$

recipe to parametrize line segment from p to q: [1+):= (1-t) p + t f, 0 ≤ t ≤1.)

$$C_3: C_3(1) = (1-1) \langle 0, 5 \rangle + 1 \langle 3, 0 \rangle, 0 \leq 1 \leq 1.$$

$$= (31, -51 + 5).$$

$$g'(t) = -90t + 42 \implies g' = 0 @ t = \frac{42}{90} = \frac{7}{15}$$

 $g(7/15) = 9/5$ mand g

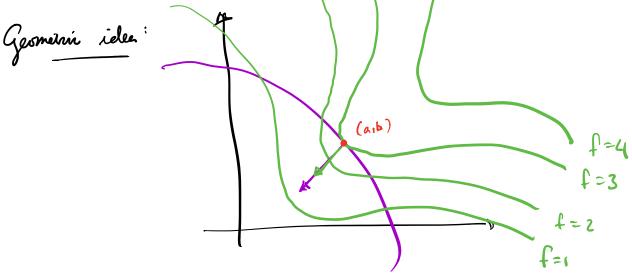
$$g(0) = -8$$
, $g(1) = -45 + 42 - 8 = -11 + 5 =$

GLOBAL MAK

GZOBAL MIN.

Goal here: maximize/ f(x,y) or f(x,y,2) subject to minimize

the constraint
$$g(x,y)=k$$
 & $g(x,y,7)=k$.



Method of Legrange multipliers: To find more 1 min of $f(x_1y_1z)$ subject to constraint $g(x_1y_1z)=t$.

(1) Find solutions of: $\begin{cases} \nabla f(x,y,z) = \lambda \nabla g(x,y,z) \\ g(x,y,z) = k \end{cases}$ (x,y,z,λ)

(2) Evaluare of at those candidates.

* technical note: only valid when these extreme exist, and when $\nabla g \neq \Omega$ on $\{g=k\}$.

Spring 15, #4. Want to make rectangular for who had, will 48 in 2 of material. Find man volume.

a.

$$2xz+2yz+xy=48.$$

$$\nabla f = \langle yz, xz_1 xy \rangle; \qquad \nabla g = \langle 2z+y, 2z+x, 2x+2y \rangle;$$

$$\sim \begin{cases}
yz = \lambda(2z+y) & (1) \\
xz = \lambda(2z+x) & (2) \\
xy = \lambda(2x+2y) & (3)
\end{cases}$$

$$(1) = xyz = \lambda \times (2z+y)$$

$$(2) \Rightarrow xyz = \lambda \times (2z+y)$$

$$(2) \Rightarrow xyz = \lambda y(2z+x) \Rightarrow \lambda x(2z+y)$$

$$(3) \Rightarrow xyz = \lambda z(2x+2y)$$

$$= \lambda z(2x+$$

 $y = x , z = \frac{x}{2}$

(4):
$$2x + 2y^2 + xy = 48$$

$$\Rightarrow x^2 + x^2 + x^2 = 48 \Rightarrow 3x^2 = 48$$

$$\Rightarrow x^2 = 16$$

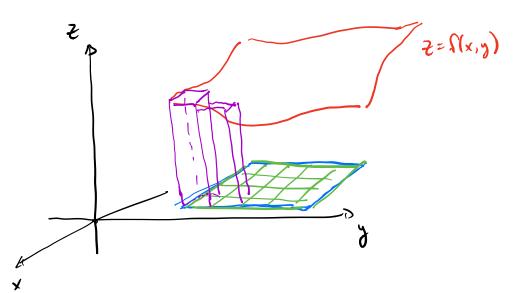
$$\Rightarrow x = 4$$

$$(x, y, z) = (4, 4, z),$$
where of 32.

W 1-2:30, F 2-3 OH this week: M 12-1:30, 726 3121 Double integrels over rectangles. Recall the definition of the definite integral $\int f(x) dx$. Sf(x)dx ≈ sum of areas of rectangles y = f(x) "sample point "Xi-1 5 Xi 5 Xi. When f(x) = 0, $\int_{\alpha}^{\infty} f(x) dx$ is the area under the graph y = f(x), a e x e b Double integrels over rectangles. Using "volume under graph" as a guide, lets define $\iiint f(x^i \lambda) q y$ R = [a,b] × (c,d) = { a & x & b, } . c & y & d }. max &xi, & yy (exists when f is continuous)

χ. Δx, Δx₂ ...

Fact: If $f(x,y) \ge 0$, then $\iint f(x,y) dA$ is the volume below the graph z = f(x,y).



Ex 2.
$$R = [-1,1] \times [-2,2]$$
. Compute $\iint_{\mathbf{R}} \sqrt{1-x^2} dA$.

Q. Note,
$$\sqrt{1-x^2} \ge 0$$
 or $R = 0$ I is the volume under the graph $z = \sqrt{1-x^2}$.

$$\text{le., } I = \text{volume of } \begin{cases} -1 \leq x \leq 1 \\ -2 \leq y \leq 2 \\ 0 \leq z \leq \sqrt{1-x^2} \end{cases}$$

$$z = \sqrt{1-x^2} \implies z^2 = 1-x^2 \implies (x^2+z^2=1)$$

circular cylinder of radius!, centered on y-anis

//

$$I = length \cdot \frac{\text{area of}}{\text{orons-section}} = 4 \cdot \left(\frac{1}{2} - \pi \cdot 1^2\right)$$

$$= 2\pi.$$

4

How to compute doubt integels more generally?

Fubinis theorem. Say
$$f(x_iy)$$
 continuous on $R = [a,5] \times [c,d]$.

$$\iint f(x_iy) dA = \iint f(x_iy) dy dx = \iint f(x_iy) dx dy - c a$$

iterated integrals

$$\frac{1}{3} \int_{a}^{b} f(x,y) dy dx = \int_{a}^{b} \left(\int_{e}^{b} f(x,y) dy \right) dx$$

$$\frac{1}{3} \int_{a}^{b} x e^{xy} dy dx = \int_{u=x}^{b} \left(\int_{u=x}^{u=3x} x e^{-\frac{1}{x}} du \right) dx$$

$$= \int_{u=xy}^{b} \int_{u=x}^{u=3x} dx$$

$$= \int_{u=x}^{b} \left(e^{x} - e^{x} \right) dx$$

$$= \int_{u=x}^{b} \left(e^{x} - e^{x} \right) dx$$

$$= \left(\frac{1}{3} e^{3x} - e^{x} \right) - \left(\frac{1}{3} - 1 \right)$$

$$= \frac{1}{3} e^{x} - e + \frac{2}{3}$$

Ex Volume of solid bounded by:

$$S = \left\{ \begin{array}{cccc} 0 & \checkmark & \times & \checkmark & 2 \\ 0 & \checkmark & y & \checkmark & 2 \\ 0 & \checkmark & 2 & \checkmark & |6 - x^2 - 2y^2| \end{array} \right\}$$

=
$$S = \int \int (16 - x^2 - 2y^2) dy dx$$
.

$$= \int_{0}^{2} \left[16y - x^{2}y - \frac{2}{3}y^{3} \right]_{y=0}^{y=2} dy$$

= 2= 16 - x2 - 2/2

$$\int_{0}^{2} \left(32 - 2 \times^{2} - \frac{2}{3} \cdot 8 \right) dx$$

$$= \int \left(\frac{30}{3} - 2x^2 \right) dx$$

$$= \int_{0}^{\infty} \frac{\delta^{\circ}}{3} \times - \frac{2}{3} \times \int_{0}^{\infty} \frac{1}{3} \times \frac{1}{3$$

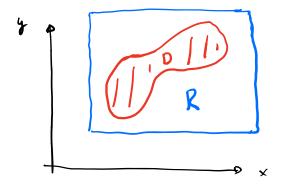
$$= \frac{160}{3} - \frac{16}{3} = \frac{144}{3}$$

OH this week: W 1-2:30,

F 2-3

•

\$12.2. Double integrals over more general regions. bounded What if we want to integral $f(x_iy)$ over a region D what's not a rectangle?



· choose R that contains D

· Define $F(x_iy)$ on R_i by $F(x_iy) := \begin{cases} f(x_iy), & (x_iy) \in D, \\ 0, & (x_iy) \in R\setminus D \end{cases}$ Now set $\begin{cases} \int f(x_iy) dA := \int F(x_iy) dA, \\ 0 & \end{cases}$

First step: assume
$$D = \begin{cases} a \leq x \leq b, \\ g_1(x) \leq y \leq g_2(x) \end{cases}$$

$$T = \iint_{\mathbb{R}} f(x,y) dA$$

$$= \iint_{\mathbb{R}} F(x,y) dA$$

$$= \iint_{\mathbb{R}} \left(\int_{\mathbb{R}} F(x,y) dy \right) dx$$

$$= \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x,y) dy \right) dx$$

$$= \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x,y) dy \right) dx$$

If D is the "type-1 region"
$$D = \begin{cases} a \in x \in b, \\ g_i(x) \in y \in g_2(x) \end{cases}$$
Then $\iint f(x_i y) JA = \iint f(x_i y) dy dx$

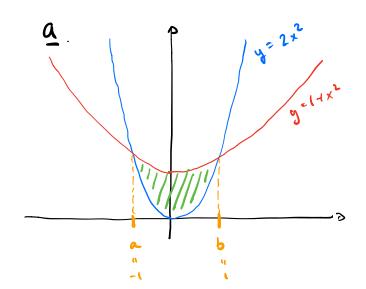
If D is the "type - 2 region"
$$D = \begin{cases} a \leq y \leq b, \\ g(y) \leq x \leq gz(y) \end{cases}$$
,

Then $\iint f(x,y) dA = \iint f(x,y) dx dy.$

D a $g(y)$

$$\mathcal{E}_{1}$$
 $I = \iint_{D} (x+2y) dA$

Ex
$$I = \iint (x+2y) dA$$
, $D = region bounded by $y = 2x^2$, $y = 1+x^2$.$



intersection pts of
$$y=2x^2$$
, $y=1+x^2$?

$$2x^2=1+x^2 \iff x^2=1$$

$$\iff x=11.$$

$$D = \begin{cases} -1 & \leq x \leq 1 \\ 2x^2 \leq y \leq 1 + x^2 \end{cases}.$$

$$xype-1$$

$$T = \iint_{D} (x+2y) dA = \iint_{2x^{2}} (x+2y) dy dx = (x(1+x^{2})+(1+x^{2}))$$

$$= \iint_{2x^{2}} (x+2y) dy dx = (x(2x^{2})+(2x^{2}))$$

$$= \iint_{2x^{2}} (x+2y) dx = (x(2x^{2})+(2x^{2}))$$

$$= \iint_{2x^{2}} (x+2y) dx = (x(2x^{2})+(2x^{2}))$$

$$= (x(2x^{2})+(2x^{2})$$

$$= (x(2x^{2})+(2x^{2}))$$

$$= (x(2x^{2})+(2x^{2})$$

$$= (x(2x^{2})+(2x^{2}))$$

$$= (x(2x^{2})+(2x^{2})$$

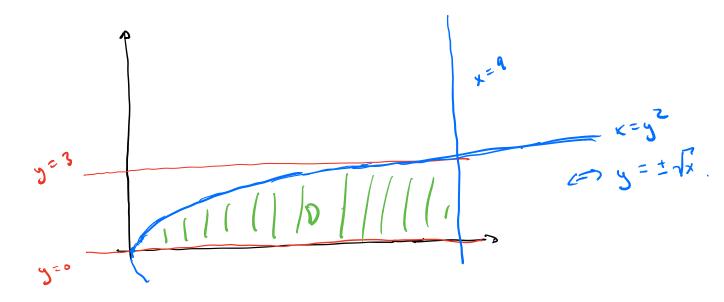
$$= (x(2x^{2})+(2x^{2}))$$

$$= (x(2x^{2})+(2x^{2})$$

$$= (x(2x^{2})+(2x^{2}$$

$$Fall '14, \#6a$$
. Evaluate $I = {}^{3} \int_{0}^{9} \int_{y^{2}} y \cos(x^{2}) dx dy$.

$$\underline{A}$$
 Change order of integration? $D := \begin{cases} 0 \leq y \leq 3 \\ y^2 \leq x \leq q \end{cases}$



$$D = \left\{ \begin{array}{l} 0 \leq x \leq 9 \\ 0 \leq y \leq \sqrt{x} \end{array} \right\}$$

$$= \int_{0}^{4} \int_{0}^{\sqrt{x}} y \cos(x^{2}) dy dx$$

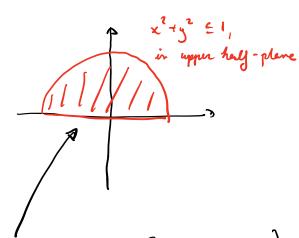
$$= \int_{0}^{4} \int_{0}^{\sqrt{x}} y \cos(x^{2}) dy dx$$

$$= \int_{0}^{4} \int_{0}^{\sqrt{x}} y \cos(x^{2}) dy dx$$

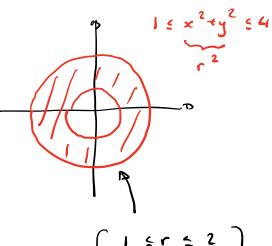
$$= \begin{cases} \frac{1}{2} \times \cos(x^2) & dx \\ u = x^2 \Rightarrow du = 2x dx \Rightarrow \frac{1}{2}xdx = \frac{1}{4} du \end{cases}$$

$$= \int_{0}^{1} \frac{1}{4} \cos u \, du = \left[\frac{1}{4} \sin u \right]_{u=0}^{u=81} = \frac{1}{4} \sin (81).$$

Δ



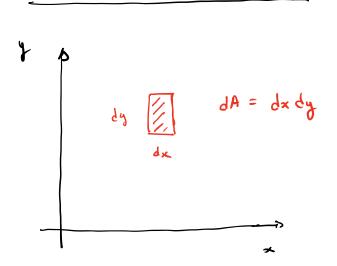
in polar coordinates:
$$\begin{cases} 0 \le r \le 1 \\ 0 \le \theta \le \pi \end{cases}$$



$$\begin{cases} 1 \le r \le 2 \\ 0 \le \theta \le 2\pi \end{cases}$$

"polar rectangle

Integrating in poler coordinates.



$$dA \approx dr \cdot (rd\theta)$$

$$longth = rd\theta = rdrd\theta$$

Jo Juy
$$R = \left\{ \begin{array}{l} a \leq r \leq b \\ \alpha \leq \theta \leq \beta \end{array} \right\}$$
 then:
$$\iint_{R} f(x,y) dA = \iint_{R} f(r\cos\theta, r\sin\theta) r d\theta .$$

(can also integrate in the other order)

$$I = \iint_{R} (3x + 4y^{2}) dA, \quad R = region townshed by x^{2} + y^{2} = 1, \quad x^{2} + y^{2} = 4$$
in upper hely-plane.

$$I = \iint_{R} r (3r \cos \theta + 4r^{2} \sin^{2} \theta) dr d\theta$$

$$R = \begin{cases} 1 \le r \le 2 \\ 0 \le \theta \le \pi \end{cases}, \quad I = \iint_{R} r (3r^{2} \cos \theta + 4r^{2} \sin^{2} \theta) dr d\theta$$

$$I = \iint_{R} r (3r^{2} \cos \theta + 4r^{2} \sin^{2} \theta) dr d\theta$$

$$I = \iint_{R} r (3r^{2} \cos \theta + 4r^{2} \sin^{2} \theta) dr d\theta$$

$$I = \iint_{R} r (3r^{2} \cos \theta + 4r^{2} \sin^{2} \theta) d\theta$$

$$I = \iint_{R} r (3r^{2} \cos \theta + 4r^{2} \sin^{2} \theta) d\theta$$

$$I = \iint_{R} r (3r^{2} \cos \theta + 4r^{2} \sin^{2} \theta) d\theta$$

$$I = \iint_{R} r (3r^{2} \cos \theta + 4r^{2} \sin^{2} \theta) d\theta$$

$$I = \iint_{R} r (3r^{2} \cos \theta + 4r^{2} \sin^{2} \theta) d\theta$$

$$I = \iint_{R} r (3r^{2} \cos \theta + 4r^{2} \sin^{2} \theta) d\theta$$

$$I = \iint_{R} r (3r^{2} \cos \theta + 4r^{2} \sin^{2} \theta) d\theta$$

$$I = \iint_{R} r (3r^{2} \cos \theta + 4r^{2} \sin^{2} \theta) d\theta$$

$$I = \iint_{R} r (3r^{2} \cos \theta + 4r^{2} \sin^{2} \theta) d\theta$$

$$I = \iint_{R} r (3r^{2} \cos \theta + 4r^{2} \sin^{2} \theta) d\theta$$

$$I = \iint_{R} r (3r^{2} \cos \theta + 4r^{2} \sin^{2} \theta) d\theta$$

$$I = \iint_{R} r (3r^{2} \cos \theta + 4r^{2} \sin^{2} \theta) d\theta$$

$$I = \iint_{R} r (3r^{2} \cos \theta + 4r^{2} \sin^{2} \theta) d\theta$$

$$I = \iint_{R} r (3r^{2} \cos \theta + 4r^{2} \sin^{2} \theta) d\theta$$

$$I = \iint_{R} r (3r^{2} \cos \theta + 4r^{2} \sin^{2} \theta) d\theta$$

$$I = \iint_{R} r (3r^{2} \cos \theta + 4r^{2} \sin^{2} \theta) d\theta$$

$$I = \iint_{R} r (3r^{2} \cos \theta + 4r^{2} \sin^{2} \theta) d\theta$$

$$I = \iint_{R} r (3r^{2} \cos \theta + 4r^{2} \sin^{2} \theta) d\theta$$

$$I = \iint_{R} r (3r^{2} \cos \theta + 4r^{2} \sin^{2} \theta) d\theta$$

$$I = \iint_{R} r (3r^{2} \cos \theta + 4r^{2} \sin^{2} \theta) d\theta$$

$$I = \iint_{R} r (3r^{2} \cos \theta + 4r^{2} \sin^{2} \theta) d\theta$$

$$I = \iint_{R} r (3r^{2} \cos \theta + 4r^{2} \sin^{2} \theta) d\theta$$

$$I = \iint_{R} r (3r^{2} \cos \theta + 4r^{2} \sin^{2} \theta) d\theta$$

$$I = \iint_{R} r (3r^{2} \cos \theta + 4r^{2} \sin^{2} \theta) d\theta$$

$$I = \iint_{R} r (3r^{2} \cos \theta + 4r^{2} \sin^{2} \theta) d\theta$$

$$I = \iint_{R} r (3r^{2} \cos \theta + 4r^{2} \sin^{2} \theta) d\theta$$

$$I = \iint_{R} r (3r^{2} \cos \theta + 4r^{2} \sin^{2} \theta) d\theta$$

$$I = \iint_{R} r (3r^{2} \cos \theta + 4r^{2} \sin^{2} \theta) d\theta$$

$$I = \iint_{R} r (3r^{2} \cos \theta + 4r^{2} \sin^{2} \theta) d\theta$$

$$I = \iint_{R} r (3r^{2} \cos \theta + 4r^{2} \sin^{2} \theta) d\theta$$

$$I = \iint_{R} r (3r^{2} \cos \theta + 4r^{2} \sin^{2} \theta) d\theta$$

$$I = \iint_{R} r (3r^{2} \cos \theta + 4r^{2} \sin^{2} \theta) d\theta$$

$$I = \iint_{R} r (3r^{2} \cos \theta + 4r^{2} \sin^{2} \theta) d\theta$$

$$I = \iint_{R} r (3r^{2} \cos \theta) d\theta$$

Jay
$$D = \begin{cases} \alpha \leq \theta \leq \beta \\ h_1(\theta) \leq r \leq h_2(\theta) \end{cases}$$
 then.

$$\iint f(x_1y) dA = \iint r f(r\cos\theta, r\sin\theta) dr d\theta.$$

Find volume of region between these surfaces.

Intersection?
$$x^2 + y^2 = 8 - 3x^2 - 3y^2$$
 $4x^2 + 4y^2 = 8$

$$4x^2+4y^2=8$$

$$(=) x^2 + y^2 = 2$$

$$= 3 \left\{ \begin{array}{c} x^2 + y^2 = 2 \\ 2 = 2 \end{array} \right\}$$

$$V = \left(\left(\left(3 - 3x^2 - 3y^2 \right) - \left(x^2 + y^2 \right) \right) \right) dA$$

$$D = \left\{ x^{2} + y^{2} \leq 2 \right\} = \left\{ \begin{array}{c} 0 \leq r \leq \sqrt{2} \\ 0 \leq \theta \leq 2\pi \end{array} \right\}$$

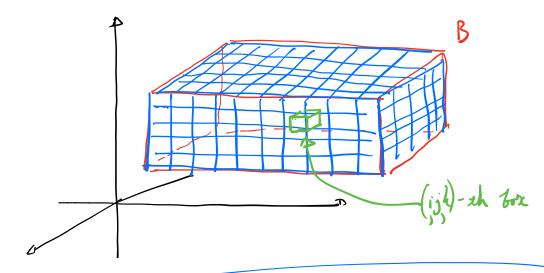
$$= \left[2\pi \left(4r^{2} - r^{4}\right)\right]_{r=0}^{r=\sqrt{2}} = 2\pi \cdot \left(8 - 4\right)$$

OH whin week: M 12-1:30, W 1-2:30, F2-3

§12.5: triple integrels.

analogous w/ SS, can define SSS f(x,y,z) dV

Mart w/ ningth case, that $D = B = \begin{cases} a \in x \in S \\ c \in y \in d \\ r \in z \in S \end{cases}$



Def. $\iiint f(x_{ij}, z) \ dV := \lim_{m \to \infty} \frac{1}{\sum_{j=1}^{m} \sum_{k=1}^{n} f(x_{ijk}^{*}, y_{ijk}^{*}, z_{ijk}^{*})} \Delta V_{ijk},$ $\lim_{m \to \infty} \Delta v_{i,1} \Delta y_{j,1} \Delta z_{i,2} = 0$

(makes sense when f is continuous)

Fubini for SSS: $\int\int\int f(x,y,z) dv = \int\int\int \int \int f(x,y,z) dx dy dz$

(can also use other orders of interpretain)

En 1. Compare
$$T = \iint_{B} xyz^{2} dV$$
, $B = \begin{cases} 0 \le x \le 1 \\ -1 \le y \le 2 \end{cases}$

$$Q. T = \iint_{A} \int_{A}^{2} \int_{A}^{2} xyz^{2} dx dy dz$$

$$= \int_{A}^{3} \int_{A}^{2} \left[\frac{1}{2}x^{2}yz^{2} \right]_{x=0}^{x=1} dy dz$$

$$= \int_{A}^{3} \int_{A}^{2} z^{2} dy dz$$

$$= \int_{A}^{3} \int_{A}^{2} z^{2} dz$$

$$= \int_{A}^{3} \int_{A}^{3} z^{2} dz$$

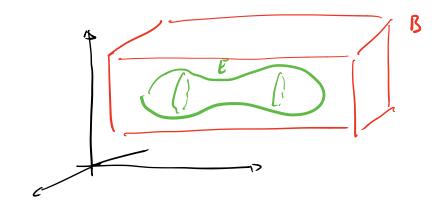
$$= \int$$

We can also integrale over general bounded regions in R.

Given $f(x_1y_1z)$ on bounded E, choose box $B \supset E$.

Then define $F(x_1y_1z)$ on B, by $F(x_1y_1z) := \begin{cases} f(x_1y_1z), & (x_1y_1z) \\ 0, & (x_1y_1z) \in B \in S \end{cases}$

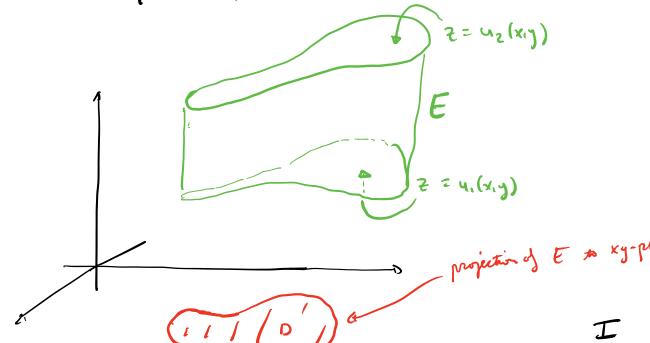
tha: \(\int \f(x,y,\z) dV := \int \int \F(x,y,\z) dV.



How to compute SSS?

flant by considering

$$E = \left\{ \left(x_{i,j}, z \right) \middle| \begin{array}{c} (x_{i,j}) \in D \\ u_{i}(x_{i,j}) \in z \in u_{2}(x_{i,j}) \end{array} \right\}$$



By similar login to \$12.7, $\iiint f(x_iy_i,z_i) dv = \iiint f(x_iy_i,z_i) dv dA$.

 $\text{Now, if } D = \left\{ \begin{array}{ll} a \in x \in b, \\ g_1(x) \in y \in g_2(x) \end{array} \right\}, \quad \text{then} \quad T = \int \int \int \int f(x,y,z) \, dz \, dy \, dx.$ a glx) u.luy)

is
$$E = \begin{cases} q \le x \le b \\ q_1(x) \le y \le q_2(x) \\ q_1(x,y) \le z \le q_2(x,y) \end{cases}$$

$$\begin{cases} f(x,y,z) \ dV = \begin{cases} f(x,y,z) \ dz \ dy \ dx \end{cases}$$

$$\begin{cases} f(x,y,z) \ dV = \begin{cases} f(x,y,z) \ dz \ dy \ dx \end{cases}$$

(similer formule if x, y, 7 appear in different order)

(a) Express
$$I = \int \int \int f(x,y,z) dv$$
 as iterated integral we obtain $dz dx dy$.

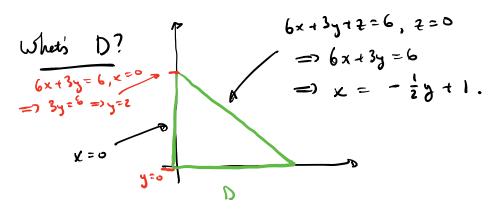
$$\Omega$$
. (a) Want $I = \int \int \int f(x_i, t) dt dx dy$
a $g_i(y) u_i(x_i, y)$

Jo, need to write
$$E$$
 in the from $E = \begin{cases} a \leq g \leq b \\ g_1(y) \leq x \leq g_2(y) \end{cases}$

$$\begin{cases} u_1(x_1y) \leq z \leq u_2(x_1y) \\ u_2(x_2y) \leq z \leq u_2(x_2y) \end{cases}$$

$$z=-6x-3y+6$$
 E: region in first ordand.

below $\{6x+3y+2=6\}$
 $x=-6x-3y+6$
 $y=-6x-3y+6$
 $y=-6x-3y+6$



$$E = \begin{cases} a \leq y \leq b \\ g_1(y) \leq x \leq g_2(y) \\ u_1(x_1y) \leq z \leq u_2(x_1y) \\ 0 \\ -6x - 3y + 6 \end{cases}$$

$$E = \begin{cases} a \leq y \leq b \\ g_1(y) \leq x \leq g_1(y) \end{cases} = 0 \qquad T = \begin{cases} c & -\frac{1}{2}b^{+1} \\ -6x - 3y + 6 \end{cases}$$

$$C = \begin{cases} c & -\frac{1}{2}b^{+1} \\ -6x - 3y + 6 \end{cases} = 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0$$

$$C = \begin{cases} c & -\frac{1}{2}b^{+1} \\ -6x - 3y + 6 \end{cases} = 0 \qquad 0 \qquad 0 \qquad 0$$

OH this week:

F 2-3

114

\$12.6: Cylindrical coordinates

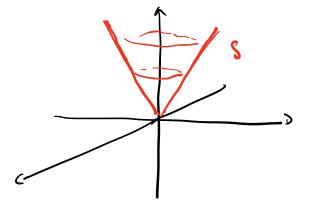
Cylindrical coordinates: transform x,y,z ~~ r, 9, Z.

 $(x = r \cos \theta, y = r \sin \theta, z = \overline{z})$

En 2 Consider surface z=r. Describe is.

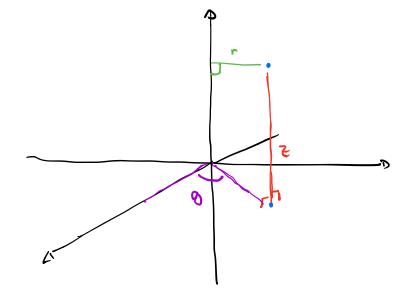
 $\frac{\alpha}{z} = r = 0 \quad z = \sqrt{x^2 + y^2}$ $= 0 \quad z^2 = x^2 + y^2$

 $z - slie^{7}$, $z^{2} = x^{2} + y^{2}$ $z^{2} = a$ $z^{2} + y^{2}$ (radius - |a| circle centered @ (0, 0))



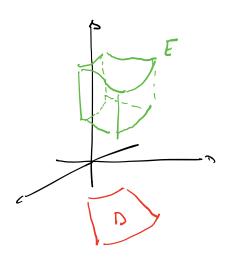
(note: r = distance to z-axis)

<u>△</u>



How to rewrite SSI in cylindrical coordinates?

This is a good idea if E has notational symmetry about z-axis and/or if x^2+y^2 shows up in integrand.



$$E = \left\{ \begin{array}{l} (x,y) \in D, \\ u_i(x,y) \in \mathbb{R} \in \mathbb{R} \\ u_i(x,y) \in \mathbb{R} \subseteq \mathbb{R} \\ u_i(x,y) \in \mathbb{R} \subseteq \mathbb{R} \\ u_i(x,y) \in \mathbb{R} \\$$

$$I = \iiint f(x_1, y_1, \xi) dV$$

$$= \iiint f(x_1, y_1, \xi) d\xi dA$$

$$= \iiint h_2(\theta) \int u_2(r\cos\theta_1 r\sin\theta) \int d\xi d\xi d\xi$$

$$= \iiint r \int u_3(r\cos\theta_1 r\sin\theta) \int d\xi d\xi d\xi$$

$$= \iiint h_3(\theta) \int u_4(r\cos\theta_1 r\sin\theta) \int d\xi d\xi d\xi d\xi$$

Juppose:
$$E = \left\{ \begin{array}{l} (x,y) \in D, \\ u_{\epsilon}(x,y) \in \mathcal{D}, \\ u_{\epsilon}(x,y) \in \mathcal{D}, \end{array} \right\}, \quad D = \left\{ (r,\theta) \middle| h_{\epsilon}(\theta) \in r \in h_{\epsilon}(\theta) \right\}, \quad \mathcal{D} = \left\{ (r,\theta) \middle| h_{\epsilon}(\theta) \in r \in h_{\epsilon}(\theta) \right\}, \quad \mathcal{D} = \left\{ (r,\theta) \middle| h_{\epsilon}(\theta) \in r \in h_{\epsilon}(\theta) \right\}, \quad \mathcal{D} = \left\{ (r,\theta) \middle| h_{\epsilon}(\theta) \in r \in h_{\epsilon}(\theta) \right\}, \quad \mathcal{D} = \left\{ (r,\theta) \middle| h_{\epsilon}(\theta) \in r \in h_{\epsilon}(\theta) \right\}, \quad \mathcal{D} = \left\{ (r,\theta) \middle| h_{\epsilon}(\theta) \in r \in h_{\epsilon}(\theta) \right\}, \quad \mathcal{D} = \left\{ (r,\theta) \middle| h_{\epsilon}(\theta) \in r \in h_{\epsilon}(\theta) \right\}, \quad \mathcal{D} = \left\{ (r,\theta) \middle| h_{\epsilon}(\theta) \in r \in h_{\epsilon}(\theta) \right\}, \quad \mathcal{D} = \left\{ (r,\theta) \middle| h_{\epsilon}(\theta) \in r \in h_{\epsilon}(\theta) \right\}, \quad \mathcal{D} = \left\{ (r,\theta) \middle| h_{\epsilon}(\theta) \in r \in h_{\epsilon}(\theta) \right\}, \quad \mathcal{D} = \left\{ (r,\theta) \middle| h_{\epsilon}(\theta) \in r \in h_{\epsilon}(\theta) \right\}, \quad \mathcal{D} = \left\{ (r,\theta) \middle| h_{\epsilon}(\theta) \in r \in h_{\epsilon}(\theta) \right\}, \quad \mathcal{D} = \left\{ (r,\theta) \middle| h_{\epsilon}(\theta) \in r \in h_{\epsilon}(\theta) \right\}, \quad \mathcal{D} = \left\{ (r,\theta) \middle| h_{\epsilon}(\theta) \in r \in h_{\epsilon}(\theta) \right\}, \quad \mathcal{D} = \left\{ (r,\theta) \middle| h_{\epsilon}(\theta) \in r \in h_{\epsilon}(\theta) \right\}, \quad \mathcal{D} = \left\{ (r,\theta) \middle| h_{\epsilon}(\theta) \in r \in h_{\epsilon}(\theta) \right\}, \quad \mathcal{D} = \left\{ (r,\theta) \middle| h_{\epsilon}(\theta) \in r \in h_{\epsilon}(\theta) \right\}, \quad \mathcal{D} = \left\{ (r,\theta) \middle| h_{\epsilon}(\theta) \in r \in h_{\epsilon}(\theta) \right\}, \quad \mathcal{D} = \left\{ (r,\theta) \middle| h_{\epsilon}(\theta) \in r \in h_{\epsilon}(\theta) \right\}, \quad \mathcal{D} = \left\{ (r,\theta) \middle| h_{\epsilon}(\theta) \in r \in h_{\epsilon}(\theta) \right\}, \quad \mathcal{D} = \left\{ (r,\theta) \middle| h_{\epsilon}(\theta) \in r \in h_{\epsilon}(\theta) \right\}, \quad \mathcal{D} = \left\{ (r,\theta) \middle| h_{\epsilon}(\theta) \in r \in h_{\epsilon}(\theta) \right\}, \quad \mathcal{D} = \left\{ (r,\theta) \middle| h_{\epsilon}(\theta) \in r \in h_{\epsilon}(\theta) \right\}, \quad \mathcal{D} = \left\{ (r,\theta) \middle| h_{\epsilon}(\theta) \in r \in h_{\epsilon}(\theta) \right\}, \quad \mathcal{D} = \left\{ (r,\theta) \middle| h_{\epsilon}(\theta) \in r \in h_{\epsilon}(\theta) \right\}, \quad \mathcal{D} = \left\{ (r,\theta) \middle| h_{\epsilon}(\theta) \in r \in h_{\epsilon}(\theta) \right\}, \quad \mathcal{D} = \left\{ (r,\theta) \middle| h_{\epsilon}(\theta) \in r \in h_{\epsilon}(\theta) \right\}, \quad \mathcal{D} = \left\{ (r,\theta) \middle| h_{\epsilon}(\theta) \in r \in h_{\epsilon}(\theta) \right\}, \quad \mathcal{D} = \left\{ (r,\theta) \middle| h_{\epsilon}(\theta) \in r \in h_{\epsilon}(\theta) \right\}, \quad \mathcal{D} = \left\{ (r,\theta) \middle| h_{\epsilon}(\theta) \in r \in h_{\epsilon}(\theta) \right\}, \quad \mathcal{D} = \left\{ (r,\theta) \middle| h_{\epsilon}(\theta) \in r \in h_{\epsilon}(\theta) \right\}, \quad \mathcal{D} = \left\{ (r,\theta) \middle| h_{\epsilon}(\theta) \in r \in h_{\epsilon}(\theta) \right\}, \quad \mathcal{D} = \left\{ (r,\theta) \middle| h_{\epsilon}(\theta) \in r \in h_{\epsilon}(\theta) \right\}, \quad \mathcal{D} = \left\{ (r,\theta) \middle| h_{\epsilon}(\theta) \in r \in h_{\epsilon}(\theta) \right\}, \quad \mathcal{D} = \left\{ (r,\theta) \middle| h_{\epsilon}(\theta) \in r \in h_{\epsilon}(\theta) \right\}, \quad \mathcal{D} = \left\{ (r,\theta) \middle| h_{\epsilon}(\theta) \in r \in h_{\epsilon}(\theta) \right\}, \quad \mathcal{D} = \left\{ (r,\theta) \middle| h_{\epsilon}(\theta) \in r \in h_{\epsilon}(\theta) \right\}, \quad \mathcal{D} = \left\{ (r,\theta) \middle| h_{\epsilon}(\theta) \in r \in h_{\epsilon}(\theta) \right\}, \quad \mathcal{D} = \left\{ (r,\theta) \middle| h_{\epsilon}(\theta) \in r \in h_{\epsilon}(\theta) \right\}, \quad \mathcal{D} = \left\{ (r,\theta) \middle| h_{\epsilon}(\theta) \in r \in h_{\epsilon}(\theta) \right\}, \quad \mathcal{D}$$

Juppose:
$$E = \left\{ \begin{array}{l} (x,y) \in D, \\ u_1(x,y) \in 2 \leq u_2(x,y) \end{array} \right\}, \quad D = \left\{ \begin{array}{l} (r,\theta) \left(x \in \theta \in \beta \right) \\ h_1(\theta) \leq r \leq h_2(\theta) \end{array} \right\}, \quad Cos\theta, rsin\theta)$$

Then:
$$\left\{ \begin{array}{l} (x,y) \in D, \\ u_1(x,y) \in 2 \leq u_2(x,y) \end{array} \right\}, \quad Cos\theta, rsin\theta, \epsilon) d\epsilon drd\theta.$$

$$\left\{ \begin{array}{l} (x,y) \in D, \\ u_1(rcos\theta, rsin\theta) \end{array} \right\}, \quad Cos\theta, rsin\theta)$$

Ex 4. Compute
$$I = \frac{2}{\sqrt{4-x^2}} \int_{\sqrt{x^2+y^2}}^{\sqrt{4-x^2}} \int_{\sqrt{x^2+y^2}}^{\sqrt{2}} dz dy dx$$

using cylindrical coordinates.

B. Rewrite $I = \left(\int \int (x^2+y^2) dV\right) = \left(\int \frac{-2 \le x \le 2}{-\sqrt{4-x^2} \le y \le \sqrt{4-x^2}}\right)$
 $\int_{\sqrt{x^2+y^2}}^{\sqrt{2}} |f|^2 = 2 \le 2$

$$D^{2} \begin{cases} -2 \le x \le 2 \\ -\sqrt{4-x^{2}} \le y \le \sqrt{4-x^{2}} \end{cases}$$

$$-\sqrt{4-x^{2}} = y \qquad y = \sqrt{4-x^{2}}$$

$$= 0 \quad 4-x^{2} = y^{2}$$

$$= 0 \quad \chi^{2} + y^{2} = 4$$

$$F = \begin{cases} 0 \notin r \leq 2 \\ 0 \notin 0 \leq 2\pi \end{cases} \implies \pm = \left(\iint \left(x^2 + y^2 \right) dV \right)$$

$$E = \begin{cases} -2 \le x \le 2 \\ -\sqrt{4-x^2} \le y \le \sqrt{4-x^2} \\ \sqrt{x^2+y^2} \le z \le 2 \end{cases}$$

$$2 = \sqrt{x^2+y^2}$$
intersection?
$$\sqrt{x^2+y^2} = 2$$

$$x^2+y^2 = 4$$

$$= \int_{2\pi}^{2\pi} \int_{2\pi}^{2\pi} (2r^{3} - r^{4}) dr d\theta$$

$$= \int_{2\pi}^{2\pi} \int_{2\pi}^{2\pi} (3r^{4} - \frac{1}{5}r^{5}) d\theta$$

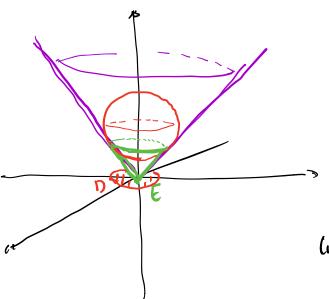
$$= \int_{2\pi}^{2\pi} (8 - \frac{32}{5}) d\theta$$

$$= \int_{2\pi}^{2\pi} (8 - \frac{32}{5}) d\theta$$

$$= \int_{2\pi}^{2\pi} (8 - \frac{32}{5}) d\theta$$

pring 18, 35. E solid founded below by == \lambda 2 = \lambda x = above by sphere $x^2+y^2+(z-z)^2=2$. Let up \iiint in cylindrical coords computers volume E.

$$\underline{\alpha}$$
 (Recall: $Vol(\overline{E}) = \iiint_{E} | dV$, Area (D) = $\iiint_{D} | dA$.)



D= {x2+y2 =1 }

= {r = 1},

intersection between purple com, red sphere?

$$z = \sqrt{x^2 + y^2}$$

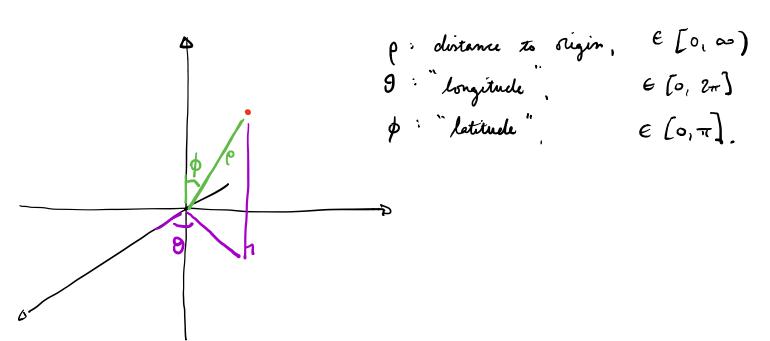
(1)
$$\rightarrow$$
 (2) \Rightarrow $2^{2} + (2-2)^{2} = 2$
 \Rightarrow $22^{2} - 47 + 2 = 0$
 \Rightarrow $2^{2} - 27 + 1 = 0$
 \Rightarrow $(2-1)^{2} = 0$
 \Rightarrow $(2-1)^{2} = 0$

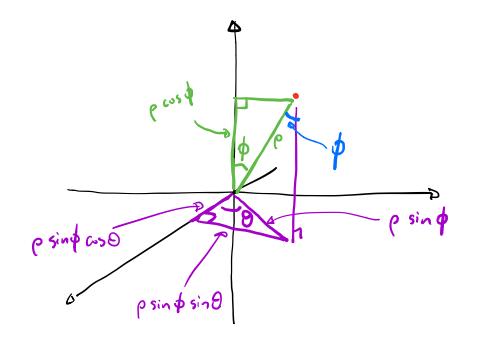
$$E = \begin{cases} x^{2} + y^{2} & \leq 1 \\ \sqrt{x^{2} + y^{2}} & \leq 2 \end{cases} \Rightarrow (x^{2} + y^{2} + (x^{2})^{2} = 2 \\ \sqrt{x^{2} + y^{2}} & \leq 2 \end{cases} \Rightarrow (x^{2} + y^{2} + (x^{2})^{2} = 2 \\ \Rightarrow (x^{2} + y^{2} + (x^{2} + y^{2})^{2} = 2 \\ \Rightarrow (x^{2} + y^{2} + y^{2} + (x^{2} + y^{2})^{2}$$

§12.7 SSS in spherical coordinates

cylindrical coordinates use shore when integrand involves $x^2 + y^2$ and /07 rotational symmetry about 2-axis

spherical coordinates: we when integrand involves $x^2 + y^2 + z^2$, and for notational symmetry about sign.





$$x = p \sin \phi \cos \theta$$

 $y = p \sin \phi \sin \theta$
 $z = p \cos \phi$

(note: $x^2+y^2+z^2=p^2$)

To convert SSS to spherical cools:

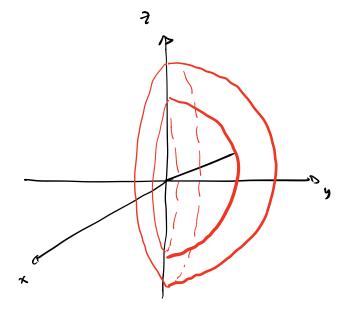
- (a) Rewrite I in spherical coordinates.
- (6) Compute I.

(a)
$$x^2 + y^2 + z^2 \in 4$$
 (c) $e^2 \in 4$ (d) $e^2 \in 4$ (e) $e^2 \in 7$.
 $x > 0 \in 9$ (sin $e^2 \in 4$ (c) $e^2 \in 4$ (d) $e^2 \in 7$.
 $x > 0 \in 9$ (sin $e^2 \in 4$ (e) $e^2 \in 7$.
 $x > 0 \in 9$ (sin $e^2 \in 4$ (e) $e^2 \in 7$.
 $x > 0 \in 9$ (sin $e^2 \in 4$ (e) $e^2 \in 7$.
 $x > 0 \in 9$ (sin $e^2 \in 4$ (e) $e^2 \in 7$.
 $x > 0 \in 9$ (sin $e^2 \in 4$ (e) $e^2 \in 7$.
 $x > 0 \in 9$ (sin $e^2 \in 4$ (e) $e^2 \in 7$.
 $x > 0 \in 9$ (sin $e^2 \in 4$ (e) $e^2 \in 7$.
 $x > 0 \in 9$ (e) $e^2 \in 7$.

$$= \int_{0}^{2} \int_{0}^{\pi} \left[\frac{1}{7} \rho^{8} \right] \frac{1}{4} \int_{0}^{2} \frac{1}$$

Spring 12, #7. Use spherical cooleds to compute I = \\ x2 JV,

E bounded by
$$y = \sqrt{9-x^2-z^2}$$
, $y = \sqrt{16-x^2-z^2}$, $z = -plane$.
= $\sqrt{2}+y^2+z^2=9$ = $\sqrt{2}+y^2+z^2=16$



Fall '12, #8. Calculate volume below
$$\{x^2+y^2+(z-1)^2=1\}$$
, above considering $z=\sqrt{x^2+y^2}$ => $(z-1)^2=1-x^2-y^2$ => $z=1\pm\sqrt{1-x^2-y^2}$

A. Intersection?
$$\sqrt{x^2+y^2}=1\pm\sqrt{1-x^2-y^2}$$

=
$$0 \times ^{2} + y^{2} = 1 + 2\sqrt{1 - x^{2} - y^{2}} + 1 - x^{2} - y^{2}$$

=
$$x^2 + y^2 = 1 \pm \sqrt{1-x^2-y^2}$$

$$\Rightarrow x^2 + y^2 - 1 = \frac{1}{2} \sqrt{1 - x^2 - y^2}$$

$$= 0 \left(x^{2} + y^{2} \right)^{2} - 2 \left(x^{2} + y^{2} \right) + 1 = 1 - x^{2} - y^{2}$$

$$= \lambda \left(x^2 + y^2 \right)^2 - \left(x^2 + y^2 \right) = 0$$

$$= 0 \left(x^{2} + y^{2} \right) - \left(x^{2} + y^{2} \right) = 0$$

$$= 0 \left(x^{2} + y^{2} \right) \left(x^{2} + y^{2} - 1 \right) = 0$$

$$= 0$$

$$\frac{\pi}{2}$$

$$\left\{\begin{array}{c} x^{2} + y^{2} = 1, \\ Z = 1, \end{array}\right\}$$

(0,0,0)

$$V = \iint_{0 \le \theta \le 2\pi} \left(1 + \sqrt{1 - x^2 - y^2} - \sqrt{x^2 + y^2} \right) dA$$

$$\begin{cases} x^2 + y^2 \le 1 \end{cases}$$

$$0 \le \theta \le 2\pi$$

$$0 \le r \le 1$$

$$= \iint_{0}^{2\pi} \left(\int_{0}^{\pi} (r + r \sqrt{1 - r^2} - r^2) dr \right) d\theta$$

$$= \iint_{0}^{2\pi} \left(\int_{0}^{\pi} (r - r^2) dr + \int_{0}^{\pi} r \sqrt{1 - r^2} dr \right) d\theta$$

$$= \int_{0}^{2\pi} \left(\int_{0}^{\pi} (r - r^2) dr - \frac{1}{2} \int_{0}^{\pi} \sqrt{u} du \right) d\theta$$

$$= \int_{0}^{2\pi} \left(\left[\frac{1}{2} r^2 - \frac{1}{3} r^3 \right]_{r=0}^{r=0} - \frac{1}{2} \left[\frac{2}{3} u^{3/2} \right]_{u=1}^{u=0} \right) d\theta$$

$$= \int_{0}^{2\pi} \left(\left[\frac{1}{6} - \left(0 - \frac{1}{6} \right) \right] d\theta$$

$$= \int_{0}^{2\pi} \left(\frac{1}{6} - \left(0 - \frac{1}{6} \right) \right) d\theta$$

$$= \int_{0}^{2\pi} \left(\frac{1}{3} d\theta \right) = \int_{0}^{2\pi} \left(\frac{1}{3} d\theta \right) d\theta$$

§13.1: Vector fields.

Definition Given a region UCR2, a vector field is function that assigns to each point of U a 20 vector. $F(x,y) = \langle P(x,y), Q(x,y) \rangle.$

Similarly for a vector field on a region in R3, but it will spix out 3D vectors.

$$E_{X,Y} = (-y,x), \text{ on } \mathbb{R}^2$$
. Draw it.

 $f_{x} = -y = 0 \quad f = -xy + \alpha f_{y}$ $f_{x} = -xy + \alpha f_{y}$

Is this conservative?

Jay
$$\langle -y, x \rangle = \nabla f = \langle f_x, f_y \rangle$$

$$f_y = x = (-xy + xy)_y = x$$

$$G(x,y) = \langle x,y \rangle^{\frac{2}{3}}$$

Gradient vector fields Given any f(x,y). $\nabla f(x_{ij})$ is a 20 vector field $\langle \frac{9x}{9t} (x^i 2)^j \frac{y^2}{9t} (x^i 2)^j \rangle$ Given any g(x,y,z), $\nabla g(x,y,z)$ is a 31) vector fields. Recall that ∇f is perpendicular to the level surfaces / curves of f. Eg., $f(x_1) = x^2y - y^3$ mo $\nabla f = \langle zxy, x^2 - 3y^2 \rangle$.

level curves are $x^2y - y^3 = 0$

a vector field E is conservative is there exists some f with $E = \nabla f$.

"potential function".

En say we have storo objects w/ masses m, M. Then the gravitational force on the object @ x is:

$$F(x) := -\frac{mMG}{|x|^3} \cdot x$$

Note:
$$F = \nabla f$$
, $f =$

§ 13.2: Line integrels.

say have body in \mathbb{R}^3 , occupying region E, and density given by $S(x_1y_1 t)$. \sim mass of body = SSS $S(x_1y_1 t)$ dV.

$$\int_{C} f(x_{i,y}) ds := \lim_{m \to \infty} \int_{S_{i}} f(x_{i,y}^{*}, y_{i}^{*}) \Delta s_{i}$$

$$\lim_{m \to \infty} \int_{S_{i}} f(x_{i,y}^{*}, y_{i}^{*}) \Delta s_{i}$$

$$\lim_{m \to \infty} \int_{S_{i}} f(x_{i,y}^{*}, y_{i}^{*}) \Delta s_{i}$$

=
$$t(\bar{c}(t_*)) / \bar{L}_i(t_i) / \nabla t_i$$

 $\approx t(\bar{c}(t_*)) / \bar{\chi}_i(t_*)_s + \bar{A}_i(t_*)_s \nabla t_i$

day r(+), a « + « b is a parametrization of our curve.

then
$$\Delta s_i \approx \sqrt{(\Delta x_i)^2 + (\Delta y_i)^2} \approx \sqrt{(x'(t_i')\Delta t_i)^2 + (y'(t_i)\Delta t_i)^2}$$

= $\sqrt{(x')^2 + (y')^2} \Delta t_i$

$$\int_{C} f(x,y) dx = \int_{A}^{b} f(\underline{c}(t)) x'(t) dt$$

$$\int_{C} f(x,y) dy = \int_{A}^{b} f(\underline{c}(t)) y'(t) dt.$$

Ez 1 Compute
$$I = \begin{cases} (2 + x^2y) ds$$
, C the top half of the unit circle.

$$\underline{\alpha} \cdot \underline{r}(t) := \langle \cos t_1 \sin t \rangle, \quad 0 \le t \le \overline{\pi}.$$

$$|\underline{r}'(t)| = |\langle -\sin t_1 \cos t \rangle| = 1.$$

$$T = \int_{0}^{\pi} (2 + \cos^{2}t + \sin t) \cdot 1 dt$$

$$= \left[2t - \frac{1}{3}\cos^{3}t\right]_{t=0}^{t=\pi} = \left(2\pi - \frac{1}{3}\cdot(-1)^{3}\right) - \left(0 - \frac{1}{3}\cdot1^{3}\right)$$

$$= \left(2\pi + \frac{2}{3}\right)$$

(Note:
$$\int_{-c}^{c} f(x_iy) ds = \int_{c}^{c} f(x_iy) ds$$

$$\int_{-c}^{c} f(x_iy) dx = -\int_{c}^{c} f(x_iy) dx$$

$$\int_{-c}^{c} f(x_iy) dy = -\int_{c}^{c} f(x_iy) dy$$

$$C_{1}, C_{2}, C_{3}(t) := \langle 1, t \rangle, 1 \le t \le 2,$$

$$|C_{2}(t)| = 1$$

$$|C_{1}, C_{2}(t)| = \langle t, t^{2} \rangle, 0 \le t \le 1.$$

$$|x'(t)| = |\langle (124)| = \sqrt{1+4+2}|$$

$$= \int_{0}^{1} 2t \sqrt{1+4t^{2}} dt + \int_{0}^{2} 2 dt$$

$$= \int_{0}^{1} 2t \sqrt{1+4t^{2}} dt + \int_{0}^{2} 2 dt$$

$$= \int_{0}^{1} 2t \sqrt{1+4t^{2}} dt + \int_{0}^{2} 2 dt$$

$$= \int_{0}^{1} 2t \sqrt{1+4t^{2}} dt + \int_{0}^{2} 2 dt$$

$$= \int_{0}^{1} \frac{1}{4} \sqrt{n} dn + 2 = \int_{0}^{1} \frac{1}{4} \cdot \frac{2}{3} \cdot n^{3/2} \int_{0}^{n+5} 42$$

$$\nabla$$

Line integrels in space

Ex 5.
$$I = \int y \sin z \, ds$$
, (circular helix, $\langle \cos t, \sin t, t \rangle$)

$$\underline{\alpha}$$
. $|\underline{r}'|(t)| = |\langle -\sin t, \cos t \rangle| = \sqrt{2}$.

$$I = \int_{0}^{2\pi} \sin t \cdot \sin t \cdot \sqrt{2} dt = \int_{0}^{2\pi} \frac{\sqrt{2}}{2} \left(1 - \cos 2t\right) dt$$

$$= \left[\frac{\sqrt{2}}{2} \cdot \left(t - \frac{1}{2} \sin 2t\right)\right]_{t=0}^{t=2\pi}$$

$$= \sqrt{2}\pi.$$

Line integrals of vector fields.

$$W \approx \sum_{i} F(x_{i}^{\dagger}, y_{i}^{\dagger}, z_{i}^{\dagger}) \cdot T(x_{i}^{\dagger}, y_{i}^{\dagger}, z_{i}^{\dagger}) \cdot \Delta s_{i}$$

unil tangent vector

$$\underline{T} = \frac{r'}{r'}$$

$$= \int_{-\infty}^{\infty} \frac{1}{|x|} \cdot |x| dt$$

$$= \int_{-\infty}^{\infty} \frac{1}{|x|} dt$$

$$\omega = \int_{a}^{b} F(\underline{r}(t)) \cdot \underline{r}'(t) dt$$

$$\left(\text{war} , \int_{-c}^{c} f \cdot dz = -\int_{c}^{c} f \cdot dz \right)$$

$$\frac{c}{\int E \cdot dc} = \int_{F} E(c(t)) \cdot \overline{c}(t) dt$$

Ex 7. With done by
$$F = \langle x^2, -xy \rangle$$
 as particle moves along $\langle \cos t, \sin t \rangle$, $0 \leq t \leq \pi/2$.

Recall FTC:
$$\int_{a}^{b} f'(x) dx = f(b) - f(a)$$
.

$$\int_{C} \nabla f \cdot dc = f(p_2) - f(p_1).$$

$$\frac{d}{dt} = \int_{0}^{\infty} \left(\frac{\partial x}{\partial t} \frac{dt}{dx} + \frac{\partial^{2}}{\partial t} \frac{dt}{dx} + \frac{\partial^{2}}{\partial t} \frac{dt}{dx} \right) dt$$

$$\frac{d}{dt} = \int_{0}^{\infty} \Delta t (\bar{x}(t)) \cdot \bar{x}_{1}(t) dt$$

$$= \int_{r}^{\sigma} \frac{q+}{q} \left(f(c(1)) \right) q+$$

$$= f(\bar{c}(b)) - f(\bar{c}(c))$$

$$= f(p_2) - f(p_i).$$

Important consequence of FTLI: If E is a conservative vector field, then $\int_{\Gamma} F \cdot dr = depends only on endpoints of C, not on which path you take to get from P, It P2.$

a criterian for conservativity on DCR2

Then a y E = (P(x,y), Q(x,y)) is conservative, then:

$$\frac{\partial p}{\partial x} = \frac{\partial Q}{\partial x}.$$

5. If domain D is open and simply - connected, and if

 $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$, then $F = \langle P, Q \rangle$ is conservative.

Proof of a . Joy F is conservative. Then exists f(xiy)

 $\frac{1}{h} = \frac{1}{h} \left(\frac{3x}{3t}, \frac{3x}{3t} \right).$

 $\frac{\partial \lambda}{\partial b} = \frac{\partial x}{\partial x} = \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} = \frac{\partial x}{\partial x}.$

simply - connected means:

* D is one piece

1) has no holes

 $E = \langle x-y, x-2 \rangle$ conservative? En 2.

is R2 Domain

 $\frac{\partial P}{\partial y} = \frac{\partial}{\partial y} \left(x - y \right) = -1, \qquad \frac{\partial Q}{\partial x} = \frac{\partial}{\partial x} \left(x - 2 \right) = 1$

not conservative

Jame Q, F = (3+2xy, x2-3y2).

= R?.

 $\frac{\partial P}{\partial y} = Z \times,$

What's an
$$f$$
 w/ $E = \nabla f$?

$$\begin{cases} f_x = 3 + 2xy \\ f_y = x^2 - 3y^2 \end{cases} \qquad (i)$$

(1) =0
$$f = \int (3+2xy) dx$$

= $3x + x^2y + \alpha(y)$.

$$(2) = 9 \left(3x + x^{2}y + x(y)\right)_{y} = x^{2} - 3y^{2}$$

$$= 9 \left(3x + x^{2}y + x(y)\right)_{y} = x^{2} - 3y^{2}$$

$$= 1 \qquad x'(y) = -3y^{2} - 3y^{2} - 3y^{2} + C.$$

$$-\delta \qquad f = 3x + x^2y - y^3 + C.$$

Apring 15, #6.
$$F = \langle e^{\times} \omega s y, 2y - e^{\times} \sin y \rangle$$
.

a. Final f where f and f and f are f and f are f are f are f are f are f and f are f and f are f are f are f and f are f are f are f and f are f are f and f are f and f are f and f are f

a.
$$\begin{cases} f_x = e^x \cos y \\ f_y = 2y - e^x \sin y \end{cases}$$
 (1)

$$(2) = \int (2y - e^{x} \sin y) dy$$

$$= y^{2} + e^{x} \cos y + \alpha(x)$$

(1) =>
$$(y^2 + e^x asy + \langle (x) \rangle_x = e^x asy$$

$$=) e^{x} \omega y + \alpha'(x) = e^{x} \omega y$$

$$-1 \quad \alpha'(x) = \delta \quad \Longrightarrow \quad \alpha' = C.$$

b. Evaluate
$$I = \int_{C} F \cdot dr$$
, C parametrized by C

$$C'(t) = \langle t + \sin \frac{\pi t}{z}, t + \cos \frac{\pi t}{z} \rangle$$

$$0 \in t \in I$$

$$I = \begin{cases} f \cdot dc = \int \nabla f \cdot dc \\ = \int f(c(1)) - f(c(0)) \\ = \int f(c(1)) - \int f(c(0)) \\ = \int f(c(0)) - \int f(c(0)) - \int f(c(0)) \\ = \int f(c(0)) - \int f(c(0)) \\ = \int f(c(0)) - \int f(c(0)) - \int f(c(0)) \\ = \int f(c(0)) - \int f(c(0)) - \int f(c(0)) \\ = \int f(c(0)) - \int f(c(0)) - \int f(c(0)) - \int f(c(0)) \\ = \int f(c(0)) - \int f(c(0)) - \int f(c(0)) - \int f(c(0)) - \int f(c(0)) \\ = \int f(c(0)) - \int f(c(0)) -$$

Theren quantity | quantity 2

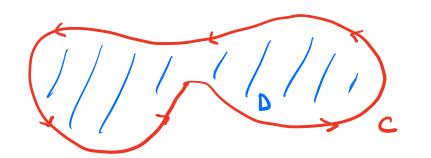
FTC $\int_{a}^{b} f'(x) dx$ f(b) - f(a)FTI I $\int_{c}^{c} \nabla f \cdot dr$ f(c(b)) - f(c(a))parametrized

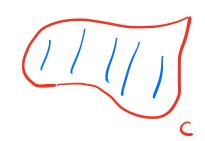
by $c = a \le t \le b$

Green's theorem

$$\iint \left(\frac{9x}{90} - \frac{9x}{90} \right) \sqrt[9]{4}$$

today.





BTW, what is Green's theorem saying when (P,Q) is conservative?

$$\cdot \qquad \int \int \left(\frac{\partial x}{\partial \theta} - \frac{\partial y}{\partial \theta} \right) dA?$$

$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} - 3$$

•
$$\iint \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dA?$$
 Well, is conservative,

then
$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$$
 -> $\int \int \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dA = \int \int \partial dA = 0$

•
$$\int F \cdot dr$$
, $F := \langle P, Q \rangle$? Parametrize C by $r(t)$,

Parametrize C by
$$r(t)$$
, as $t \le 6$.

Then
$$\underline{c}(a) = \underline{c}(b)$$
. $b: \int \underline{F} \cdot d\underline{r} = \int \nabla f \cdot d\underline{r}$

$$= f(z(r)) - f(z(r))$$

Ez 1. Evaluate
$$I = \int_{C} \left(\frac{x^4}{P} dx + xy dy \right), C = \int_{C}^{(0,1)}$$

$$\underline{A}. \quad \mathcal{N}_{\sigma L}, \quad D = \left\{ \begin{array}{ll} 0 \leq x \leq 1 \\ 0 \leq y \leq -x + 1 \end{array} \right\}.$$

$$\int_{C} \int_{C} \left(\left(x \right) \right)_{x} - \left(x^{4} \right)_{y} dy$$

$$= \int_{C} \left(\left(x \right) \right)_{x} - \left(x^{4} \right)_{y} dy$$

$$= \int_{C} \left(\left(x \right) \right)_{x} - \left(x^{4} \right)_{y} dy$$

$$= \int_{C} \left(\left(x \right) \right)_{x} - \left(x^{4} \right)_{y} dy$$

$$= \int_{C} \left(\left(x \right)_{y} \right)_{x} - \left(x^{4} \right)_{y} dy$$

$$= \int_{C} \left(\left(x \right)_{y} \right)_{x} - \left(x^{4} \right)_{y} dy$$

$$= \int_{C} \left(\left(x \right)_{y} \right)_{x} - \left(x^{4} \right)_{y} dy$$

$$= \int_{C} \left(\left(x \right)_{y} \right)_{x} - \left(x^{4} \right)_{y} dy$$

$$= \int_{C} \left(\left(\left(x \right)_{y} \right)_{x} - \left(\left(x^{4} \right)_{y} \right)_{y} dy$$

$$= \int_{C} \left(\left(\left(x \right)_{y} \right)_{x} - \left(\left(x^{4} \right)_{y} \right)_{y} dy$$

$$= \int_{C} \left(\left(\left(x \right)_{y} \right)_{x} - \left(\left(x^{4} \right)_{y} \right)_{y} dy$$

$$= \int_{C} \left(\left(\left(x \right)_{y} \right)_{x} - \left(\left(x^{4} \right)_{y} \right)_{y} dy$$

$$= \int_{C} \left(\left(\left(x \right)_{y} \right)_{x} - \left(\left(x^{4} \right)_{y} \right)_{y} dy$$

$$= \int_{C} \left(\left(\left(x \right)_{y} \right)_{x} - \left(\left(x^{4} \right)_{y} \right)_{y} dy$$

$$= \int_{C} \left(\left(\left(x \right)_{y} \right)_{x} - \left(\left(x^{4} \right)_{y} \right)_{y} dy$$

$$= \int_{C} \left(\left(\left(x \right)_{y} \right)_{x} - \left(\left(x^{4} \right)_{y} \right)_{y} dy$$

$$= \int_{C} \left(\left(\left(x \right)_{y} \right)_{x} - \left(\left(x^{4} \right)_{y} \right)_{y} dy$$

$$= \int_{C} \left(\left(\left(x \right)_{y} \right)_{x} - \left(\left(x^{4} \right)_{y} \right)_{y} dy$$

$$= \int_{C} \left(\left(\left(x \right)_{y} \right)_{x} - \left(\left(x^{4} \right)_{y} \right)_{y} dy$$

$$= \int_{C} \left(\left(\left(x \right)_{y} \right)_{x} - \left(\left(x^{4} \right)_{y} \right)_{y} dy$$

$$= \int_{C} \left(\left(\left(x \right)_{y} \right)_{y} - \left(\left(x^{4} \right)_{y} \right)_{y} dy$$

$$= \int_{C} \left(\left(\left(x \right)_{y} - \left(\left(x^{4} \right)_{y} \right)_{y} dy$$

$$= \int_{C} \left(\left(\left(x \right)_{y} - \left(\left(x^{4} \right)_{y} \right)_{y} dy$$

$$= \int_{C} \left(\left(\left(x \right)_{y} - \left(\left(x^{4} \right)_{y} \right)_{y} dy$$

$$= \int_{C} \left(\left(\left(x \right)_{y} - \left(\left(x^{4} \right)_{y} \right)_{y} dy$$

$$= \int_{C} \left(\left(\left(x \right)_{y} - \left(\left(x^{4} \right)_{y} \right)_{y} dy$$

$$= \int_{C} \left(\left(\left(x \right)_{y} - \left(\left(x \right)_{y} \right)_{y} dy$$

$$= \int_{C} \left(\left(\left(x \right)_{y} - \left(\left(x \right)_{y} \right)_{y} dy$$

$$= \int_{C} \left(\left(\left(x \right)_{y} - \left(\left(x \right)_{y} - \left(\left(x \right)_{y} \right)_{y} dy$$

$$= \int_{C} \left(\left(\left(x \right)_{y} - \left(\left($$

Use Green's therem to compute

$$T = \begin{cases} F \cdot dr, & F = \langle -\frac{1}{2} x^2 y^2, x \frac{3}{2} \rangle, & C \\ C & Q & Q \end{cases}$$

the boundary of the region D bying inside $x^2+y^2=1$, above x - axis, to the left of $x = -\frac{1}{2}$, $v = -\frac{1}{2}$, $v = -\frac{1}{2}$

$$\frac{\alpha}{x^{2}+y^{2}=1}$$

$$y = \sqrt{1-x^{2}}$$

$$x = -\frac{1}{2}$$

$$\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = (xy^3)_x - (-\frac{1}{2}x^2y^2)_y$$

$$= y^3 - (-x^2y)$$

$$= x^2y + y^3$$

$$I = \int_{C} F \cdot J_{2} = \int_{C} \left(x^{2}y + y^{3} \right) dA$$

$$= \int_{-1}^{1/2} \left(x^{2}y + y^{3} \right) dy dx$$

$$= \int_{-1}^{1/2} \left(\frac{1}{2} x^{2}y^{2} + \frac{1}{4}y^{4} \right) \frac{y = \sqrt{1 - x^{2}}}{y = 0} dx$$

$$= \int_{-1}^{1/2} \left(\frac{1}{2} x^{2} + \frac{1}{4}y^{4} \right) dy dx$$

$$= \int_{-1}^{1/2} \left(\frac{1}{2} x^{2} + \frac{1}{4}y^{4} \right) dy dx$$

$$= \int_{-1}^{1/2} \left(\frac{1}{2} x^{2} + \frac{1}{4}y^{4} + \frac{1}{4}(1 - 2x^{2} + x^{4}) \right) dx$$

$$= \int_{-1}^{1/2} \left(\frac{1}{2} x^{2} + \frac{1}{4}x^{4} + \frac{1}{4}(1 - 2x^{2} + x^{4}) \right) dx$$

$$= \int_{-1}^{-1} \left(\frac{1}{4} - \frac{1}{4} \times^{4} \right) dx$$

$$= \int_{-1}^{1} \frac{1}{4} \times - \frac{1}{20} \times^{5} \int_{-1}^{-1} dx$$

\$13 finel problems

SSS in spherical coords w/ complicated belong abrodute max/min

narry has multipliers

On extension of Green's theorem: $\int \int \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dA = \int \left(Pdx + Qdy\right)$ even when D has holes, where \int includes integrals
over belies of holes, trended clockwine.

