Math 225 Practice Problems

- (1) Let A be an n×n matrix whose null space is $\{0\}$. If $\mathbf{v}_1, \ldots, \mathbf{v}_n$ span \mathbf{R}^n show that $A(\mathbf{v}_1), \ldots, A(\mathbf{v}_n)$ also span \mathbf{R}^n .
- (2) Let A be an $n \times n$ matrix satisfying $rk(A) = rk(A^2)$. Show that $ker(A) = ker(A^2)$.
- (3) Let $V = \mathbb{R}^3$. Let B be the basis $B = \{\mathbf{e}_1 + \mathbf{e}_2, \mathbf{e}_1 + \mathbf{e}_3, \mathbf{e}_1 \mathbf{e}_3\}$, and C the basis $C = \{2\mathbf{e}_1 + \mathbf{e}_2, \mathbf{e}_1 \mathbf{e}_2, 2\mathbf{e}_3\}$. a) Find the change of basis matrix $P_{C \leftarrow B}$.
- b) Find the component vector of $(4,2,1)^T$ with respect to B.

- a) Use elementary row operations to find the reduced row echelon form of A.
- b) Find a basis for the row space of A.
- c) Find a basis for the image of A.
- d) Find a basis for the null space of A.
- (5) Let $B=\{x_1,\ldots,x_n\}$ be a basis for the vector space V, and let W be a subspace of V. Does W necessarily have a basis that consists of vectors in B? Carefully explain your answer.
- (6) Let A be an n by n matrix, and E its reduced row echelon form. Do A and E necessarily have the same determinant? Carefully explain your answer.

- (7) Let V be the vector space of 3×3 matrices with real entries, and let W be the subset of matrices of trace zero. Explain why W is a subspace of V, and find a basis for W.
- (8) Let A = $\begin{bmatrix} 3 & 1 & 5 \\ 0 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$. Use elementary row operations to find A⁻¹.
- (9) Find all values of a for which the matrix $\begin{bmatrix} 1 & a & 2 \\ 3 & 1 & 4 \\ 2 & 0 & 2 \end{bmatrix}$ is non-singular.
- (10) Find a set of independent vectors that span the same subspace of \mathbf{R}^4 as (1,2,1,2), (1,3,1,4), (5,12,5,14), and (0,2,0,6). Carefully explain your solution.
- (11) a) Are the vectors $1+x^2$, $1-x^3$, $x+x^2$, x^2 , and x-2 a basis for P_3 ? Why?
- b) Do they span P₃? Why?
- c) If your answer to (b) is yes find a subset of the vectors that form a basis of P_3 .
- (12) Find the general solution to

$$2x + 3y + z = 4$$

$$x + y + 2z = 0$$

$$6x + 8y + 6z = 8$$