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Foreword

Every proof in this book is ultimately reduced to a counting problem—typically enu-
merated in two different ways. Counting leads to beautiful, often elementary, and very
concrete proofs. While not necessarily the simplest approach, it offers another method to
gain understanding of mathematical truths. To a combinatorialist, this kind of proof is the
only right one. We offer Proofs That Really Count as the counting equivalent of the visual
approach taken by Roger Nelsen in Proofs Without Words I & II [37, 38].

Why count?

As human beings we learn to count from a very early age. A typical 2 year old will proudly
count to 10 for the coos and applause of adoring parents. Though many adults readily
claim ineptitude in mathematics, no one ever owns up to an inability to count. Counting
is one of our first tools, and it is time to appreciate its full mathematical power. The
physicist Emst Mach even went so far as to say, “There is no problem in all mathematics
that cannot be solved by direct counting” [36].

Combinatorial proofs can be particularly powerful. To this day, I (A.T.B.) remember
my first exposure to combinatorial proof when I was a freshman in college. My professor
proved the Binomial Theorem

= (n k, n—k
(@+y)"=)_ (k)w Y
k=0
by writing
(z+y)"=(z+y)(z+y)---(z+y)
7 times

and asking “In how many ways can we create an 2*y”* term?” Sudden clarity ensued.
The theorem made perfect sense. Yes, I had seen proofs of the Binomial Theorem before,
but they had seemed awkward and I wondered how anyone in his or her right mind would
create such a result. But now it seemed very natural. It became a result I would never
forget.

What to count?

We have selected our favorite identities using numbers that arise frequently in mathematics
(binomial coefficients, Fibonacci numbers, Stirling numbers, etc.) and have chosen elegant
counting proofs. In a typical identity, we pose a counting question, and then answer it in
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X PROOFS THAT REALLY COUNT

two different ways. One answer is the left side of the identity; the other answer is the
right side. Since both answers solve the same counting question, they must be equal. Thus
the identity can be viewed as a counting problem to be tackled from two different angles.

We use the identity
2. (n
%)=
k=0

to illustrate a proof structure found throughout this book. There is no need to use the
formula F(_:l—kﬁ for (7). Instead, we interpret (};) as the number of k-element fsubsets
of an n-element set, or more colorfully, as the number of ways to select a committee of
k students from a class of n students.

Question: From a class of n students, how many ways can we create a committee?

Answer 1: The number of committees with 0 students is (i). The number of com-
mittees with 1 student is (7). In general, the number of committees with exactly k
students is (}). Hence the total number of committees is Yz (5)-

Answer 2: To create a committee of arbitrary size, we decide, student by student
whether or not they will be on the committee. Since each of the n students is either
“on” or “off” the committee, there are 2 possibilities for each student and thus 2™
ways to create a committee.

Since our logic is impeccable in both answers, they must be equal, and the identity
follows.

Another useful proof technique is to interpret the left side of an identity as the size of
a set, the right side of the identity as the size of a different set, and then find a one-to-one
correspondence between the two sets. We illustrate this proof structure with the identity

z(;)=2(2k1:-1) forn > 0.

k>0 k>0

Both sums are finite since (’;‘) = 0 whenever ¢ > n. Here it is easy to see what both sides
count. The challenge is to find the correspondence between them.

Set 1: The committees with an even number of members formed from a class of n
students. This set has size 3.5 (5)-

Set 2: The committees with an odd number of members formed from a class of n
students. This set has size Y50 (o5m1)-

Correspondence: Suppose one of the students in the class is named Waldo. Any
committee with an even number of members can be turned into a committee with an
odd number of members by asking “Where’s Waldo?” If Waldo is on the committee,
then remove him. If Waldo is not on the committee, then add him. Either way, the
parity of the committee has changed from even to odd.

Since the process of “removing or adding Waldo” is completely reversible, we
have a one-to-one correspondence between these sets. Thus both sets must have the
same size, and the identity follows.
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Often we shall prove an identity more than one way, if we think a second proof can
bring new insight to the problem. For instance, the last identity can be handled by counting
the number of even subsets directly. See Identity 129 and the subsequent discussion.

What can you expect when reading this book? Chapter 1 introduces a combinatorial
interpretation of Fibonacci numbers as square and domino tilings, which serves as the
foundation for Chapters 2-4. We begin here because Fibonacci numbers are intrinsically
interesting and their interpretation as combinatorial objects will come as a delightful sur-
prise to many readers. As with all the chapters, this one begins with elementary identities
and simple arguments that help the reader to gain a familiarity with the concepts before
proceeding to more complex material. Expanding on the Fibonacci tilings will enable us
to explore identities involving generalized Fibonacci numbers including Lucas numbers
(Chapter 2), arbitrary linear recurrences (Chapter 3), and continued fractions (Chapter 4.)

Chapter 5 approaches the traditional combinatorial subject of binomial coefficients.
Counting sets with and without repetition leads to identities involving binomial coeffi-
cients. Chapter 6 looks at binomial identities with alternating signs. By finding corre-
spondences between sets with even numbers of elements and sets with odd numbers of
elements, we avoid using the familiar method of overcounting and undercounting provided
by the Principle of Inclusion-Exclusion.

Harmonic numbers, like continued fractions, are not integral—so a combinatorial ex-
planation requires investigating the numerator and denominator of a particular represen-
tation. Harmonic numbers are connected to Stirling numbers of the first kind. Chapter 7
investigates and exploits this connection in addition to identities involving Stirling num-
bers of the second kind.

Chapter 8 considers more classical results from arithmetic, number theory, and alge-
bra including the sum of consecutive integers, the sum of consecutive squares, sum of
consecutive cubes, Fermat’s Little Theorem, Wilson’s Theorem, and a partial converse to
Lagrange’s Theorem.

In Chapter 9, we tackle even more complex Fibonacci and binomial identities. These
identities require ingenious arguments, the introduction of colored tiles, or probabilistic
models. They are perhaps the most challenging in the book, but well worth your time.

Occasionally, we digress from identities to prove fun applications. Look for a divisi-
bility proof on Fibonacci numbers in Chapter 1, a magic trick in Chapter 2, a shortcut to
calculate the parity of binomial coefficients in Chapter 5 and generalizations to congru-
ences modulo arbitrary primes in Chapter 8.

Each chapter, except the last, includes a set of exercises for the enthusiastic reader
to try his or her own counting skills. Most chapters contain a list of identities for which
combinatorial proofs are still being sought. Hints and references for the exercises and a
complete listing of all the identities can be found in the appendices at the end of the book.

Our hope is that each chapter can stand independently, so that you can read in a
nonlinear fashion if desired.

Who should count?

The short answer to this question is “Everybody counts!” We hope this book can be
enjoyed by readers without special training in mathematics. Most of the proofs in this
book can be appreciated by students at the high school level. On the other hand, teachers
may find this book to be a valuable resource for classes that emphasize proof writing
and creative problem solving techniques. We do not consider this book to be a complete
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survey of combinatorial proofs. Rather, it is a beginning. After reading it, you will never
view quantities like Fibonacci numbers and continued fractions the same way again. Our
hope is that an identity like

Identity 5. Font1 = i Zn: ('""J‘ ") (n :J)

=0 j=0

for Fibonacci numbers should give you the feeling that something is being counted and
the desire to count it. Finally, we hope this book will serve as an inspiration for mathe-
maticians who wish to discover combinatorial explanations for old identities or discover
new ones. We invite you, our readers, to share your favorite combinatorial proofs with us
for (possible) future editions.

After all, we hope all of our efforts in writing this book will count for something.

Who counts?

We are pleased to acknowledge the many people who made this book possible—either
directly or indirectly.

Those who came before us are responsible for the rise in popularity of combinatorial
proof. Books whose importance cannot be overlooked are Constructive Combinatorics
by Dennis Stanton and Dennis White, Enumerative Combinatorics Volumes 1 & 2 by
Richard Stanley, Combinatorial Enumeration by Ian Goulden and David Jackson, and
Concrete Mathematics by Ron Graham, Don Knuth & Oren Patashnik. In addition to these
mathematicians, others whose works continue to inspire us include George E. Andrews,
David Bressoud, Richard Brualdi, Leonard Carlitz, Ira Gessel, Adriano Garsia, Ralph
Grimaldi, Richard Guy, Stephen Milne, Jim Propp, Marta Sved, Herbert Wilf, and Doron
Zeilberger.

One of the benefits of seeking combinatorial proofs is being able to involve undergrad-
uate researchers. Many thanks to Robin Baur, Tim Carnes, Dan Cicio, Karl Mahlburg,
Greg Preston, and especially Chris Hanusa, David Gaebler, Robert Gaebler, and Jeremy
Rouse, who were supported through undergraduate research grants provided by the Har-
vey Mudd College Beckman Research Fund, the Howard Hughes Medical Institute, and
the Reed Institute for Decision Science directed by Janet Myhre. Colleagues providing
ideas, identities, input, or invaluable information include Peter G. Anderson, Bob Beals,
Jay Cordes, Duane DeTemple, Persi Diaconis, Ira Gessel, Melvin Hochster, Dan Kalman,
Greg Levin, T.S. Michael, Mike Orrison, Jim Propp, James Tanton, Doug West, Bill
Zwicker, and especially Francis Su. It couldn’t have happened without the encouragement
of Don Albers and the work of Dan Velleman and the Dolciani board of the Mathematical
Association of America. Finally, we are ever grateful for the love and support of our
families.
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CHAPTER 1

Fibonacci Identities

Definition The Fibonacci numbers are defined by Fy = 0, F; = 1, and for n > 2,
Fo=F_1+ Fa-a.

The first few numbers in the sequence of Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, 13,
21, 34, 55, 89,144,....

1.1 Combinatorial Interpretation of Fibonacci Numbers

How many sequences of 1s and 2s sum to n? Let’s call the answer to this counting
question f,. For example, f; = 5 since 4 can be created in the following 5 ways:

1+14+1+1, 14142, 14241, 24141, 2+2

Table 1.1 illustrates the values of f,, for small n. The pattern is unmistakable; f,, begins
like the Fibonacci numbers. In fact, f,, will continue to grow like Fibonacci numbers, that
is for n > 2, f, satisfies fp, = fn—1 + fa—2. To see this combinatorially, we consider
the first number in our sequence. If the first number is 1, the rest of the sequence sums
to n — 1, so there are f,_; ways to complete the sequence. If the first number is 2, there
are fn—o ways to complete the sequence. Hence, f, = fr—1 + fn—2-

For our purposes, we prefer a more visual representation of f,. By thinking of the
1s as representing squares and the 2s as representing dominoes, fp counts the number
of ways to tile a board of length n with squares and dominoes. For simplicity, we call a
length » board an n-board. Thus fj = 5 enumerates the tilings:

[T PN T S

Figure 1.1. All five square-domino tilings of the 4-board

We let fo =1 count the empty tiling of the 0-board and define f_; = 0. This leads
to a combinatorial interpretation of the Fibonacci numbers.

Combinatorial Theorem 1 Let f,, count the ways to tile a length n. board with squares
and dominoes. Then f, is a Fibonacci number. Specifically, for n > -1,

fn s Fn-i-l-



2 CHAPTER 1. FIBONACCI IDENTITIES

1 2 3 4 5 6
1 11 111 1111 | 11111 | 111111
2 12 112 1112 | 11112

21 121 1121 | 11121
211 1211 11211
22 122 1122
2111 | 12111
212 1212
221 1221
21111
2112
2121
2211
222

fi=i]h=2]h=3]fi=5]%=8/f=13

Table 1.1. f,. and the sequence of 1s and 2s summing to n for n = 1,2,...,6.

1.2 Identities
Elementary Identities

Mathematics is the science of patterns. As we shall see, the Fibonacci numbers exhibit
many beautiful and surprising relationships. Although Fibonacci identities can be proved
by a myriad of methods, we find the combinatorial approach ultimately satisfying.

For combinatorial convenience, we shall express most of our identities in terms of f,
instead of F;,. Although other combinatorial interpretations of Fibonacci numbers exist
(see exercises 1-9), we shall primarily use the tiling definition given here.

In the proof of our first identity, as with most proofs in this book, one of the answers to
the counting question breaks the problem into disjoint cases depending on some property.
We refer to this as conditioning on that property.

Identity 1 Forn 20, fo+ fi+ fo+ -+ fo=frra— 1.

Question: How many tilings of an (n 4 2)-board use at least one domino?

Answer 1: There are fn42 tilings of an (n + 2)-board. Excluding the “all square”
tiling gives fn42 — 1 tilings with at least one domino.

Answer 2: Condition on the location of the last domino. There are f tilings where
the last domino covers cells k + 1 and & + 2. This is because cells 1 through k can
be tiled in fj. ways, cells k + 1 and k + 2 must be covered by a domino, and cells
k + 3 through n + 2 must be covered by squares. Hence the total number of tilings

with at least one domino is fo + fi + f2 + - -+ + fr (or equivalently ZZ=0 fi). See
Figure 1.2.

Identity 2 Forn >0, fo+ fo+ fa+ - + fon = fony1-

Question: How many tilings of a (2n + 1)-board exist?
Answer 1: By definition, there are fon4+1 such tilings.
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1 2 3 4 n-2 n-l

e o o -/"'.l
1 2 3 4 n2 nl n ntl ni2

- T
1 2 3 4 n2 nl n ntl nt2

n2 nl n ntl nt2

IR
~, e s
R LN W

S

., N N .
X ST (A SRAEY PG Sl

1 2 n2 n-l n ntl nit2

Figure 1.2. To see that fo + fi + fo + -+ + fn = fas2 — 1, tile an (n + 2)-board with squares
and dominoes and condition on the location of the last domino.

34
3 4

Answer 2: Condition on the location of the last square. Since the board has odd
length, there must be at least one square and the last square occupies an odd-numbered
cell. There are fo, tilings where the last square occupies cell 2k + 1, as illustrated
in Figure 1.3. Hence the total number of tilings is Z;::o fok-

Many Fibonacci identities depend on the notion of breakability at a given cell. We say
that a tiling of an n-board is breakable at cell , if the tiling can be decomposed into two
tilings, one covering cells 1 through k and the other covering cells k1 through n. On the

1 2 3 4 2n-2 2n-1 2n 2n+l

o o o 5

Figure 1.3. To see that fo + fo + fa + -+ + fan = fon+t, tile a (2n + 1)-board with squares
and dominoes and condition on the location of the last square.
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e
o
2

27

1 2 3 4 5 617 8 9 10
Figure 1.4. A 10-tiling that is breakable at cells 1,2, 3,5, 7, 8, 10 and unbreakable at cells 4, 6,9.

other hand, we call a tiling unbreakable at cell k if a domino occupies cells k and k+ 1.
For example, the tiling of the 10-board in Figure 1.4 is breakable at cells 1,2, 3,5, 7, 8, 10,
and unbreakable at cells 4, 6, 9. Notice that a tiling of an n-board (henceforth abbreviated
an n-tiling) is always breakable at cell n. We apply these ideas to the next identity.

Identity 3 For m,n 20, finin = fnfo + frn-1fa-1.

Question: How many tilings of an (m + n)-board exist?
Answer 1: There are f,4+n (m + n)-tilings.

Answer 2: Condition on breakability at cell m.

An (m+n)-tiling that is breakable at cell m, is created from an m-tiling followed
by an n-tiling. There are f,, f,, of these.

An (m 4+ n)-tiling that is unbreakable at cell m must contain a domino covering
cells m and m + 1. So the tiling is created from an (m — 1)-tiling followed by a
domino followed by an (n — 1)-tiling. There are f,,—1 fn~1 of these.

Since a tiling is either breakable or unbreakable at cell m, there are fi,f. +
Jm—1fn—1 tilings altogether. See Figure 1.5.

m + n tilings breakable at m:

2 m-1 m m+lm+ m+n

. 1% g
Jm o

m + n tilings unbreakable at m:

1 2 m—-1l m m+lm+2 m+n

g S Jo-1

Figure 1.5. To prove frmin = fmfa + fm—1fa-1 count (m + n)-tilings based on whether or not
they are breakable or unbreakable at m.

The next two identities relate Fibonacci numbers to binomial coefficients. We shall
say more about combinatorial proofs with binomial coefficients in Chapter 5. For now,
recall the following combinatorial definition for binomial coefficients.

Definition The binomial coefficient (;:) counts the number of ways to select k elements
from an n-element set.

Notice that (2) = 0 whenever k > n, so the sum in the identity below is finite.
Identity 4 Forn>0, () + ("7Y) + ("33) + -+ = fu.

Question: How many tilings of an n-board exist?
Answer 1: There are f, n-tilings.
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Answer 2: Condition on the number of dominoes. How many n-tilings use exactly
i dominoes? For the answer to be nonzero, we must have 0 < i < n/2. Such tilings
necessarily use n — 2¢ squares and therefore use a total of n — ¢ tiles. For example,
Figure 1.6 is a 10-tiling that uses exactly three dominoes and four squares. The
dominoes occur as the fourth, fifth, and seventh tiles. The number of ways to select
i of these n—1 tiles to be dominoes is ("; ). Hence there are 3,5 ("7) n-tilings.

9

Figure 1.6. There are (;’) 10-tilings that use exactly three dominoes. Such a 10-tiling uses exactly
seven tiles and is defined by which three of the seven tiles are dominoes. Here the fourth, fifth, and
seventh tiles are dominoes.

Identity 5 For n > 0, ZZ( i )(n2 J) = fon+1.

120 520

Question: How many tilings of a (2n + 1)-board exist?
Answer 1: There are fon41 (21 + 1)-tilings.

Answer 2: Condition on the number of dominoes on each side of the median square.

Any tiling of a (2n + 1)-board must contain an odd number of squares. Thus one
square, which we call the median square, contains an equal number of squares to
the left and right of it. For example, the 13-tiling in Figure 1.7 has five squares. The
median square, the third square, is located in cell 9.

How many tilings contain exactly 2 dominoes to the left of the median square
and exactly j dominoes to the right of the median square? Such a tiling has (i + 5)
dominoes and therefore (2n + 1) — 2(¢ + j) squares. Hence the median square has
n — % — j squares on each side of it. Since the left side has (n—i—j)+i=n—j
tiles, of which ¢ are dominoes, there are ("'J ) ways to tile to the left of the median

square. Similarly, there are (" %) ways to tile to the right of the median square.

Hence there are ("7 ) (™;7) tilings altogether.
As 7 and j vary, we obtain the total number of (2n + 1)-tilings as

> (707)

median square

Figure 1.7. The 13-tiling above has three dominoes left of the median square and one domino to
the right of the median square. The number of such tilings is (3) (3)-

The next identity is ‘prettier’ when stated as Fo, = Zﬁ:o (’,:)Fk
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Identity 6 For n >0, fon-1 = Y ey (1) fi—1-
Question: How many (2n — 1)-tilings exist?
Answer 1: fon,_1.
Answer 2: Condition on the number of squares that appear among the first 7 tiles.
Observe that a (2n — 1)-tiling must include at least » tiles, of which at least one is
a square. If the first » tiles consist of k squares and » — k dominoes, then these tiles

can be arranged (7) ways and cover cells 1 through 2n — k. The remaining board
has length k — 1 and can be tiled fi—; ways. See Figure 1.8.

I 2k _ 201
2n-k cells: k squares, n-k dominoes k-l?_clls
( Z) tilings S tlings

Figure 1.8. There are (}) fx-1 tilings of a (2n—1)-board where the first = tiles contain k squares
and n — k dominoes.

For the next identity, we use the combinatorial technique of finding a correspondence
between two sets of objects. In particular, we use a 1-to-3 correspondence between the
set of n-tilings and the set of (n — 2)-tilings and (n + 2)-tilings.

Identity 7 For n > 1, 3f, = fni2 + fa—2-
Set 1: Tilings of an n-board. By definition, this set has size f,.
Set 2: Tilings of an (n+2)-board or an (n—2)-board. This set has size fni2+ fn—2-

Correspondence: To prove the identity, we establish a I-to-3 correspondence be-
tween Set 1 and Set 2. That is, for every object in Set 1, we can create three objects
in Set 2 in such a way that every object in Set 2 is created exactly once. Hence Set
2 is three times as large as Set 1.

Specifically, for each n-tiling in Set 1, we create the following three tilings that
have length n + 2 or length n — 2. The first tiling is an (n + 2)-tiling created by
appending a domino to the n-tiling. The second tiling is an (n + 2)-tiling created
by appending two squares to the n-tiling. So far, so good. But what about the third
tiling? This will depend on the last tile of the n-tiling. If the n-tiling ends with a
square, we insert a domino before that last square to create an (n + 2)-tiling. If the
n-tiling ends with a domino, then we remove that domino to create an (n — 2)-tiling.
See Figure 1.9.

To verify that this is a 1-to-3 correspondence, one should check that every tiling
of length n + 2 or length n — 2 is created exactly once from some n-tiling. For a
given (n + 2)-tiling, we can find the n-tiling that creates it by examining its ending
and removing

i) the last domino (if it ends with a domino) or

il) the last two squares (if it ends with two squares) or

iii) the last domino (if it ends with a square preceded by a domino).
For a given (n — 2)-tiling, we simply append a domino for the n-tiling that creates
it.

Since Set 2 is three times the size of Set 1, it follows that fri2 + fr—2 = 3f,.
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|e———— n-tilng ———»

ﬂ Add a domino.

[——rtlng———] 4[«— n-ling ——— > [ )

Add 2 sqpares.
\ Ifit ends in a square -

| e—(n-1)-liling ———
insert domino betore square.

Ifit ends in a domino
| e— (n-2)-thing ———5]
remove domino.

Figure 1.9. A one-to-three correspondence.

Pairs of Tilings

In this subsection, we introduce the technique of fail swapping, which will prove to be
very useful in several settings.

Consider the two 10-tilings offset as in Figure 1.10. The first one tiles cells 1 through
10; the second one tiles cells 2 through 11. We say that there is a fault at cell , for
2 <7 £ 10, if both tilings are breakable at cell i. We say there is a fault at cell 1 if the
first tiling is breakable at cell 1. Put another way, the pair of tilings has a fault at cell
i, for 1 < 7 < 10, if neither tiling has a domino covering cells ¢ and ¢ + 1. The pair of
tilings in Figure 1.10 has faults at cells 1, 2, 5, and 7. We define the 1ails of a tiling pair
to be the tiles that occur after the last fault. Observe that if we swap the tails of Figure
1.10 we obtain the 11-tiling and the 9-tiling in Figure 1.11, and it has the same faults.

Tail swapping is the basis for the identity below, sometimes referred to as Simson’s
Formula or Cassini’s Identity. At first glance, it may appear unsuitable for combinatorial
proof due to the presence of the (—1)" term. Nonetheless, we will see that this term is
merely the “error term” of an “almost” one-to-one correspondence.

9

< tails 3

Figure 1.11. After tail swapping. we have an 11-tiling and a 9-tiling with exactly the same faults.
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Identity 8 For n >0, f2 = fpy1fn-1 +(-1)"

Set 1: Tilings of two n-boards (a rop board and a bottom board.) By definition, this
set has size f2.

Set 2: Tilings of an (n+1)-board and an (n — 1)-board. This set has size fn41fn-1-

Correspondence: First, suppose 7 is odd. Then the top and bottom board must each
have at least one square. Notice that a square in cell 7 of either board ensures that
a fault must occur at cell 7 or cell ¢ — 1. Swapping the tails of the two n-tilings
produces an (n + 1)-tiling and an (n — 1)-tiling with the same faults. This produces
a 1-to-1 correspondence between all pairs of n tilings and all tiling pairs of sizes
n+1 and n—1 that have faults. Is it possible for a tiling pair of sizes n+4-1 and n—1
to be “fault-free”? Yes, precisely when all dominoes are in “‘staggered formation” as
in Figure 1.12. Thus, when n is odd, f2 = fo41fn-1— 1.

Similarly, when 7 is even, tail swapping creates a 1-to-1 correspondence between
faulty tiling pairs. The only fault-free tiling pair is the all domino tiling of Figure
1.13. Hence when = is even, f2 = f,,;1fn—1 + 1. Considering the odd and even
case together produces our identity.

1 2 3 4 5 6 7 8 9 10

Figure 1.12. When 7 is odd, there is only one fault-free tiling pair.

Figure 1.13. When 7 is even, there is only one fault-free tiling pair.

Identity 9 Forn >0, ) f2 = fufns1-

Question: How many tilings of an n-board and (n + 1)-board exist?
Answer 1: There are f, f,+1 such tilings.

Answer 2: Place the (n + 1)-board directly above the n board as in Figure 1.14,
and condition on the location of the last fault. Since both boards begin at cell 1, we

1 2 n ntl

Figure 1.14. There are £, f,+1 ways to tile these two boards.
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1 2 ~ i i+l

S k
Figure 1.15. There are f7 tilings with last fault at cell k.

shall consider any tiling pair to have a fault at “cell 0”. How many tiling pairs have
their last fault at cell k, where 0 < k < n? There are f,f ways to tile both boards
through cell k. To avoid future faults, there is exactly one way to finish the tiling,
as in Figure 1.15. (Specifically, all tiles after cell k£ will be dominoes except for a
single square placed on cell k£ + 1 in the row whose tail length is odd.) Summing
over all possible values of k, gives us Yy _, f tilings.

Advanced Fibonacci Identities

In this subsection we present identities that in our opinion require extra ingenuity. For the
first identity, we utilize a method of encoding tilings as binary sequences.

Specifically, for any m-tiling, create the length m binary sequence by converting each
square into a “1” and converting each domino into a “01”. Equivalently, the ith term
of the binary sequence is 1 if and only if the tiling is breakable at cell 7. The resulting
binary sequence will have no consecutive Os and will always end with 1. For example,
the 9-tiling in Figure 1.16 has binary representation 011101011.

e

2
bty
Lt
1

Figure 1.16. The 9-tiling above has binary representation 011101011.

Conversely, a length n binary sequence with no consecutive Os that ends with 1
represents a unique n-tiling. If such a sequence ends with 0, then it represents an (n —1)-
tiling (since the last 0 is ignored).

We may now interpret the following identity.

Identity 10 For n > 0, fo + fa-1 + Soncs fy2"~2"k =2n

Question: How many binary sequences of length n exist?
Answer 1: There are 2™ length » binary sequences.

Answer 2: For each binary sequence, we identify a tiling. If a sequence has no
consecutive zeros, we identify it with a unique tiling of length » or n — 1 depending
on whether it ended with 1 or 0, respectively. Otherwise, the sequence contains a 00
whose first occurrence appears in cells k+1 and k+2 for some k, 0 < k < n—2. For
such a sequence we associate the k-tiling defined by the first k terms of the binary
sequence (note that if k > 0, then the kth digit must be 1.) For example, the length
11 binary sequence 01101001001 is identified with the 5-tiling “domino-square-
domino”, as would any binary sequence of the form 0110100abcd where a,b,c,d
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01101000000
01101000001
01101000010
01101000011
01101000100
01101000101
01101000110
01101000111
01101001000
01101001001
01101001010
01101001011
01101001100
01101001101
01101001110
01101001111

Figure 1.17. The 5-tiling shown is generated by 16 different binary sequences of length 11, all
beginning with 0110100,

can each be 0 or 1. See Figure 1.17. In general, for 0 < k¥ < n — 2, each k-tiling
will be listed 2"~2-% times. In particular, the empty tiling will be listed 2"~ times.

The next identity is based on the fact that for any ¢ > 0 a tiling can be broken into
segments so that all but the last segment have length ¢ or ¢--1.

Identity 11 For m,p,t > 0, .fm+(t+l)p = Zf:o (I:)ftz g,—-]:ifm-l-i-

Question: How many (m -+ (¢ + 1)p)-tilings exist?
Answer 12 frop(t41)p-

Answer 2: For any tiling of length m + (t -+ 1)p, we break it into p+ 1 segments of
length j1, j2, ..-» Jp+1. For 1 <4 < p, j; = ¢ unless that would result in breaking
a domino in half—in which case we let j; = t + 1. Segment p + 1 consists of the
remaining tiles. Count the number of tilings for which ¢ of the first p segments have
length ¢ and the other p — % segments have length ¢ 4 1. These p segments have total
length it + (p — 2)(¢ + 1) = (¢ + 1)p — i. Hence jp41 = m + i. Since segments of
length ¢ can be covered f; ways and segments of length £--1 must end with a domino
and can be covered f;_, ways, there are exactly (%) f 7} fm44 such tilings. See
Figure 1.18.

=35 J2= J3=5 remaining tiles

Figure 1.18. When ¢ = 4 and p = 3, the tiling above is broken into segments of length j; = 5,
J2 =4, j3 =5, and jq = 6.

The next identity reads better when stated in terms of the traditional definition of
Fibonacci numbers (where Fy = 0 and F} = 1 and thus f,,—; = F), for all n > 0).

Theorem 1 For m > 1,n> 0, if m|n, then F,,|F,,.
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Our combinatorial approach allows us to prove more.

Theorem 2 For m > 1,n > 0, if m divides n, then fp,_; divides fn—1. In fact, if
n=gqm, then fp,_3 = fm—l Z‘L—l f,":;.lz.fn—jm-

Question: When n = gm, how many (n — 1)-tilings exist?
Answer 1: f,_;.

Answer 2: Condition on the smallest j for which the tiling is breakable at cell
Jjm — 1. Such a j exists and has value at most g since the tiling is breakable at cell
n—1 = gm—1. Given j, there are j—1 dominoes ending at cells m, 2m, ..., (j—1)m.
The cells preceding these dominoes can be tiled in 2~ ways. Cells (j — 1)m +
1,(j—1)m+2,...,(jm—1) can be tiled f,,—; ways. The rest of the board can

then be tiled f,—jn, ways. See Figure 1.19.

m-1 2m-1 (-Dm-1 j{’,l-l qn:,‘.]
C - | 2 1

Sz 2 ver foa

ft‘n-l jr;-]m

Figure 1.19. There are £, fm—1 fa—jm ways to tile an (n — 1)-board when j is the smallest
integer for which the tiling is breakable at jm — 1.

1.3 A Fun Application

Although the application in this section is not proved entirely by combinatorial means, it
utilizes some of the identities from this chapter. Since we have done most of the work to
prove it already, it would be a shame to omit it.

For integers a and b, the greatest common divisor, denoted by gcd(a, b), is the largest
positive number dividing both @ and b. It is easy to see that for any integer z,

ged(a, b) = ged(b, a — bz), (1.1)

since any number that divides both a and b must also divide b and a — bz, and vice versa.
Two special cases are frequently invoked:

ged(a, b) = ged(b,a — b) 1.2)
and
Theorem 3 (Euclidean Algorithm) If n = gm + 7, then ged(n, m) = ged(m, 7).

In the Euclidean algorithm we typically choose ¢ = [ 2], so that 0 < r < m. For
example, when we apply the Euclidean algorithm to find gcd(255, 68), we get

ged (255, 68) = ged(68,51) = ged(51,17) = ged(17,0) = 17.

It immediately follows that consecutive Fibonacci numbers are relatively prime, that
is

Lemma 4 For n > 1, gcd(Fp, Fry) =1
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Proof. This is the world’s fastest proof by induction. When n = 1, ged(Fy, Fo) =
ged(1,0) = 1. Assuming the lemma holds for the number 7, then using (1.2), we get

ged(Fny1, Fr) = ged(Fr, Frgr — F,) =gcd(Fy, Fr1) = 1. <
Next we exploit Identity 3 to obtain
Lemma S For m,n > 0, Fpn = Fy1Fn + FnFa-s.

Proof. Frpyn = fm+(n—l) = fmfn-1+ fn-1fn-2= Fm+1Fn + FinFrpms- 4

Finally, we recall that Theorem 1 states if m divides n, then F},, divides F,. We are
now ready to state and prove one of the most beautiful properties of Fibonacci numbers.

Theorem 6 For m > 1, n > 0, ged(Fr, Fin) = Fged(n,m)-

Proof. Suppose n = qm + v, where 0 < r < m. By Lemma §, F, = Fynyr =
qu+1Fr + quFr—l- Thus

ng(Fn, Fm) = ng(Fm.) qu+1Fr + qu r—l)

but by (1.1), we can subtract multiples of F;,, from the second term and not change the
greatest common divisor. Since by Theorem 1, Fi, is a multiple of Fiy, it follows that

ged(Fr, Fin) = ged(Fony Fym41 Fr) = gcd(Fn, Fr), (1.3)

where the last equality follows since F}, (a divisor of Fyy,) is relatively prime to Fym4a
by Lemma 4.

But what do we have here? Equation (1.3) is the same as the Euclidean Algorithm,
but with F's on top. Thus, for example,

ged(Fass, Feg) = ged(Fes, Fs1) = ged(Fs1, Fir) = ged(Far, Fo) = Fir,

since Fp = 0. The theorem immediately follows. o

For the reader interested in seeing even more advanced Fibonacci identities, we rec-
ommend reading Chapters 2 and 9. One of the treats in store is a proof of Binet’s Formula,
an exact formula for the nth Fibonacci number. Specifically

&

1+ \/5 n B 1— \/3 n
n ‘/5' 2 _2 .
An eager reader actually has all the tools necessary to tackle the combinatorial proof and
can jump straight to Identity 240.

1.4 Notes

Fibonacci numbers have a long and rich history. They have served as mathematical inspi-
ration and amusement since Leonardo Pisano (filius de Bonacci) first posed his original
rabbit reproduction question at the beginning of the 13th century. Fibonacci numbers have
touched the lives of mathematicians, artists, naturalists, musicians and more. For a peek
at their history, we recommend Ron Knott’s impressive web site, Fibonacci Numbers and
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the Golden Section [32). Extensive collections of Fibonacci identities are available in
Vajda’s Fibonacci & Lucas Numbers, and the Golden Section: Theory and Applications
[58] and Koshy's Fibonacci and Lucas Numbers with Applications [33).

The Fibonacci Society is a professional organization focusing on Fibonacci numbers
and related mathematics, emphasizing new results, research proposals, challenging prob-
lems, and new proofs of old ideas. They publish a professional journal, The Fibonacci
Quarterly, and organize a biennial international conference.

Combinatorial interpretations of Fibonacci numbers have existed for a long time and
can be surveyed in Basin and Hoggatt’s article [1] in the inaugural issue of the Fibonacci
Quarterly or Stanley’s Enumerative Combinatorics Vol. 1 Chapter 1 exercise 14 [51].
We’ve chosen the tiling interpretation and notation presented in Brigham et. al. [15] and
further developed in [8].

Finally, a bijective proof of Cassini’s formula similar to the one given for Identity 8
without tilings was given by Werman and Zeilberger [60].

1.5 Exercises
Prove each of the identities below by a direct combinatorial argument.

Identity 12 Forn 21, i+ fs+---+ fan-1=fon — 1.
Identity 13 For n >0, f2+ f2.; = fony2.

Identity 14 Forn > 1, f2 — f2_, = fop-1.

Identity 15 For n > 0, fant2 = frnt1fni2 = fn-1fn-
Identity 16 For n > 2, 2fn = foi1 + fn-2.

Identity 17 For n > 2, 3f, = fni2 + fa-2-

Identity 18 For n > 2, 4fn = fot2 + fo + fr—2-

Identity 19 demonstrates how any four consecutive Fibonacci numbers generate 2 Pythagorean
Triple.

Identity 19 Forn 2> 1,

(f'n-l.)(:n+2)2 + (anfn+l)2 = (fn+1fn+2 - fn—lfn)2 — (f2n+2)2-
Identity 20 For 12> D, fatp = > beg (2) fa—i-
Identity 21 For n >0, 3 p_o(=1)*fi =1+ (=1)"fa-1.

n 1
(—1)k+ ) fn+l
; > 0, 1 = Indl
Identity 22 For n.> 0, k];[1 ( + 72 5

Identity 23 Forn >0, fo+ fa+ fo+-+fan = 2 fani2.

Identity 24 Forn> 1, fi+ fa+ fr+++++ fan-1= 3(fans1 — 1).
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Identity 25 Forn > 1, fo+ fs + fo + -+ + fan-2 = 3(fan — 1).
Identity 26 Forn >0, fo+ fa+ fo + -+ + fan = fonSfons1-
Identity 27 Forn > 1, fi+ fo+ fo+ -+ fan-3 = fZ,_1-
Identity 28 Forn> 1, fo + fo + fio + -+ + fan—2 = fon—1Fon-
Identity 29 Forn > 1, fa+ fz+ fi1 + -+ + fan-1 = fon-1fon41-
Identity 30 Forn >0, f2, .+ f2=2f2,, +2f2,,.

Identity 31 Forn > 1, f2 = forofns1fa—ifo—2 +1.

There are many combinatorial interpretations for Fibonacci numbers. Show that the
interpretations below are equivalent to tiling a board with squares and dominoes by
creating a one-to-one correspondence.

1. For n 2 0, fp41 counts binary n-tuples with no consecutive 0s.

2. For n > 0, fp41 counts subsets S of {1,2,...,n} such that S contains no two
consecutive integers.

3. Forn > 2, fn—2 counts tilings of an n-board where all tiles have length 2 or greater.
4. For n > 1, f,_; counts tilings of an n-board where all tiles have odd length.

5. For n > 1, f, counts the ways to arrange the numbers 1 through 7 so that for each
1<i<n,theithnumberisi—1loriori+1.

6. For n > 0, fan+1 counts length n sequences of 0s, 1s, and 2s where 0 is never
followed immediately by 2.

7.Forn 2 1, fon-1 = ) @102, Where 7 > 1 and q,...,a, are positive
integers that sum to n. For example, fs =3+2-1+4+1-24+1 1-1=8. (Hint:
102 - - @, counts n-tilings with tiles of any length, where a; is the length of the
jth tile, and one cell covered by each tile is highlighted.)

8. For n > 1, f, counts ¥ 2number of o; that equal 1 g1 med over the same set
as before. For example, when n = 3 =2+4+1=14+2=1+1+1, fo =
204+2' 420 +23=13.

9. For n > 1, fn41 counts binary sequences (by, bs, ... ,bn), where by < by > b3 <
by > bs---.

Uncounted Identities

The identities listed below are in need of combinatorial proof.

1. Frn>1, f3 +f?+"‘ +f3= fan+a + (—:())ntn-l +5.

2. Forn20, fi+2f2+ - +nfpn=(n+1)fosz — fara +3.
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3. There are identities for mf,, analogous to Identities 1618 for every integer m.

(@) Forn2>4,5f, = foys + fo-1 + fa-a.

(b) For n > 4, 6f, = fn+3 + fat1 + frn-a.

(C) For n 2 41 7fn . fn+4 + fn—4-

(d) Forn > 4, 8fn = faga + fr + fa-s.

(e) For n > 4, 9f, = fo4a + fri1 + fa—2 + fa-a.

(t) For n 2 4, 10fn = fn+4 + fn+2 + fn—2 + fn-4.

(8) For n > 4, 11fp = fags + fas2 + fa + fa-2 + fr-s.

(b) Forn 2 6, 12f, = fots + fa-1+ fa-3 + fas-
These identities are examples of Zeckendorf’s Theorem which states that every
integer can be uniquely written as the sum of nonconsecutive Fibonacci numbers.
The coefficients in the above formulas are the same as in the unique expansion of
positive integers in nonconsecutive integer powers of ¢ = (1++/5)/2. For example

5=¢3+¢"1+¢% and 6 = ¢3 + ¢! + ¢4 Is there a unifying combinatorial
approach for all of these identities?

4. Forn > 4, f3+3f3 o+ f3_, = 3f2_, + 6f3_,. Jay Cordes has shown us
a combinatorial proof that requires breaking the tiling triples into over a dozen
different cases. Does something simpler exist?

5. Find a combinatorial interpretation for the Fibonomial coefficient

(n) _ (n!)F
m)p  (m)p((n—m))F’
where (0!))F =1, and for k > 1, (K!)p = FrFg—1--- F1.






CHAPTER 2

Gibonacci and Lucas Identities

Definition The Gibonacci numbers G,, are defined by nonnegative integers Go, G and
forn > 2, Gn, =Gp-1 + Gp-2.

Definition The Lucas numbers L,, are defined by Ly = 2, L, = 1 and for n > 2,
L, =Lp-1+ Lp-2.

The first few numbers in the sequence of Lucas numbers are 2, 1, 3, 4, 7, 11, 18, 29,
47, 76, 123, 199,....

In this chapter, we pursue identities involving Gibonacci numbers, which is shorthand
for generalized Fibonacci numbers. There are many ways to generalize the Fibonacci
numbers, and we shall pursue many of these generalizations in the next chapter, but for
our purposes, we say a sequence of nonnegative integers Go, G1, Go, ... is a Gibonacci

sequence if for all n > 2,
Gn == Gn-l + Gn—2-

Of all the Gibonacci sequences, the initial conditions that lead to the most beautiful
identities correspond to the Fibonacci and Lucas numbers.

2.1 Combinatorial Interpretation of Lucas Numbers

As we shall see Lucas numbers operate like Fibonacci numbers running in circles. Define
£, to be the number of ways to tile a circular board composed of n labeled cells with
curved squares and dominoes. For example £4 = 7 as illustrated in Figure 2.1. Clearly
there are more ways to tile a circular n-board than a straight n-board since it is now
possible for a single domino to cover cells » and 1. We define an n-bracelet to be a tiling
of a circular n-board. A bracelet is out-of-phase when a single domino covers cells n and
1 and in-phase otherwise. In Figure 2.1, we see that there are five in-phase 4-bracelets
and two out-of-phase 4-bracelets. Figure 2.2 illustrates that £; = 1, £2 = 3, and {3 = 4.
Notice that there are two ways to create a 2-bracelet with a single domino—either in-phase
or out-of-phase.

From our initial data, the number of n-bracelets looks like the Lucas sequence. To
prove that they continue to grow like the Lucas sequence, we must argue that for n > 3,

['n= n 1+p'n-'.!-

17
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Figure 2.1. A circular 4-board and its seven bracelets. The first five bracelets are in-phase and
the last two are out-of-phase.

Figure 2.2, There is one 1-bracelet and there are three 2-bracelets and four 3-bracelets.

To see this we simply condition on the last tile of the bracelet. We define the first tile to
be the tile that covers cell 1, which could either be a square, a domino covering cells 1
and 2, or a domino covering cells n and 1. The second tile is the next tile in the clockwise
direction, and so on. The last tile is the one that precedes the first tile. Since it is the first
tile, not the last, that determines the phase of the tiling, there are £,,_; n-bracelets that
end with a square and £,,_5 n-bracelets that end with a domino. By removing the last tile
and closing up the resulting gap, we produce smaller bracelets.

To make the recurrence valid for n = 2, we define £p = 2, and interpret this to mean
that there are two empty tilings of the circular 0-board, an in-phase O-bracelet and an
out-of-phase 0-bracelet. This leads to a combinatorial interpretation of Lucas numbers.

Combinatorial Theorem 2 For n > 0, let £,, count the ways to tile a circular n-board
with squares and dominoes. Then £,, is the nth Lucas number; that is

en = Ln.

As one might expect, there are many identities with Lucas numbers that resemble
Fibonacci identities. In addition, there are many beautiful identities where Lucas and
Fibonacci numbers interact.

2.2 Lucas Identities
Identity 32 For n > 1, Ly, = fo + fa2.

Question: How many tilings of a circular n-board exist?
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In phase Out of phase

n2

Figure 2.3. Every circular n-bracelet can be reduced to an n-tiling or an (n — 2)-tiling, depending
on its phase.

Answer 1: By Combinatorial Theorem 2, there are L,, n-bracelets.

Answer 2: Condition on whether the tiling is in-phase or out-of-phase. Since an
in-phase tiling can be straightened into an n-tiling, there are f,, in-phase bracelets.
Likewise, an out-of-phase n-bracelet must have a single domino covering cells n and
1. Cells 2 through 7 — 1 can then be covered as a straight (n — 2)-tiling in f,—2
ways. Hence the total number of n-bracelets is f, + f.—2. See Figure 2.3.

The next identity associates an odd-length board tiling with a board and bracelet pair.

Set 1: Tilings of a (2n — 1)-board. This set has size fo,—j.

Set 2: Bracelet-tiling pairs (B, T’) where the bracelet has length n and the tiling has
length n — 1. This set has size Ly, fp-1.

Correspondence: Given a (2n — 1)-board T, there are two cases to consider, as
illustrated in Figure 2.4.

Case I: breakable atrn Case II; not breakable at n
— ]

Figure 2.4. A (2n — 1)-tiling can be converted to an n-bracelet and (n — 1)-tiling. In our
correspondence, the n-bracelet is in-phase if and only if the (2n — 1)-tiling is breakable at cell n.
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Case 1. If T* is breakable at cell n, then glue the right side of cell n to the left side
of cell 1 to create an in-phase n-bracelet B, and cells n + 1 through 2n — 1 form an
(n—1)-tiling T.
Case 2. If T* is unbreakable at cell n, then cells » and n + 1 are covered by a
domino which we denote by d. Cells 1 through n — 1 become an (n — 1)-tiling T
and cells n through 2n — 1 are used to create an out-of-phase n-bracelet with d as
its first tile.

This correspondence is easily reversed since the phase of the n-bracelet indicates
whether Case 1 or Case 2 is invoked.

Identity 34 Forn >0, 5f, = L, + Ln42.

Set 1: Tilings of an n-board. This set has size f,.

Set 2: Tilings of a circular n-board or a circular (n + 2)-board. This set has size
Ly, + Lpyo.
Correspondence: To prove the identity, we establish a 1-t0-5 correspondence be-
tween Set 1 and Set 2. That is, for every tiling in Set 1, we can create five bracelets
in Set 2 in such a way that every bracelet in Set 2 is created exactly once. Hence
Set 2 is five times as large as Set 1.

Given an n-tiling, four of the five bracelets arise naturally. See Figure 2.5. We
can create

1. an in-phase n-bracelet by gluing cell » to cell 1, or

2. an in-phase (n + 2)-bracelet beginning with two inserted squares, or
3. an in-phase (n + 2)-bracelet beginning with an inserted domino, or
4. an out-of-phase (n + 2)-bracelet beginning with an inserted domino.

At this point we pause to investigate which bracelets have not yet been created. We
are missing out-of-phase n-bracelets and (n + 2)-bracelets that begin with a square

5a.Endsinadomino |  5b.Endsin a souare
insert domino

Figure 2.5. Every n-tiling generates five bracelets of size n or n + 2.
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followed by a domino. So the fifth bracelet depends on whether the original n-tiling
begins with a square or domino. If it begins with a domino, we create

Sa. an out-of-phase n-bracelet by rotating bracelet 1 clockwise by one cell.

If it begins with a square, we create

5b. an in-phase (n+2)-bracelet that begins with the square followed by an inserted
domino.

See Figure 2.5.

Identity 35 Forn >0, n
Z .ern-r = (n + 2).fn-

r=0
Set 1: The set of n-tilings. This set has size f,.

Set 2: The set of ordered pairs (A, B) where A is an r-tiling and B is an (n — 7)-
bracelet for some 0 < 7 < n. This set has size } _ frLn—r-

Correspondence: We provide a 1-to-(n + 2) correspondence between Set 1 and Set
2. Given an n-tiling X, we first examine for each 1 < » < n — 1, whether or not X
is breakable at cell . See Figure 2.6. If so, then X = AB where A is an r-tiling
and B is an (n — r)-tiling, and we associate the tiling pair (A, B) where B is an
in-phase (n—r)-bracelet. Otherwise, X = AdB where A is an (r—1)-tiling, B is an

If X is breakable at 7:

l rr+l\ /

If X is unbreakable at r:

l rr+l \ /

Figure 2.6. Given an n-tiling, for every cell 0 < 7 < n — 1 we generate a tiling-bracelet pair
(A, B) whose lengths sum to n. The nth cell generates two tiling pairs, since there are two empty
O-bracelets.
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(n —r — 1)-tiling. We associate the tiling pair (A, dB) where dB is an out-of-phase
(n — 7 + 1)-bracelet. This accounts for n — 1 tiling pairs. We also associate (with
r = () the tiling pair (§, X), where X is an in-phase n-bracelet and (with r = n) the
two tiling pairs (X, %) and (X,0™) since there are two 0-bracelets, one in-phase
and one out-of phase. Altogether, each n-tiling generates (n + 2) tiling pairs (4, B).
The process is easily reversed by examining the phase of bracelet B.

Identity 36 For n> 0, L2 = Lo, + (-1)"- 2.

Set 1: The set of ordered pairs of concentric n-bracelets. This set has size L2.
Set 2: The set of 2n-bracelets.

Correspondence: We present an almost one-to-one correspondence between Set 1
and Set 2 for the case where 7 is odd. We leave the even case for the reader.

Since n is odd, each n-bracelet must contain at least 1 square, and therefore the
concentric bracelets must contain a first fault at some cell 1 < k& < n. That is, both
bracelets are breakable at cell &, but not at cells 1,2,. ..,k — 1. From this we create
a 2n-bracelet as follows. Starting with the tile covering cell 1 of the outer bracelet
(so that the new bracelet has the same phase as the outer bracelet) we tile cells 1
through k& as in the outer bracelet, then tile cells k£ + 1 through k + » using the tiles
that cover cells k + 1,k + 2,...,n,1,2,...,k of the inner bracelet. Finally, we tile
cells k+n+1 through 2n using the remaining tiles of the outer bracelet. See Figure
2.7. The resulting 2n-bracelet has the property that a diameter can pass through it,
entering between cells k and k& + 1 and departing between cells n+k and n+k+1.
Further no diameter exists that enters between j and j+1for 1 < j < k-1
Hence this process is completely reversible provided that a diameter exists in our
2n-bracelet. Since a square at cell j in our 2n-bracelet guarantees that a diameter
can enter between cell j and either cell 5 — 1 or cell j + 1, there are precisely

Figure 2.7. Concentric n-bracelets producing a 2n-bracelet.
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two tilings of the 2n-bracelet that have no diameters, namely the all-domino tilings.
(Note that the all domino tilings have no diameter since n is odd.) Consequently,

2.3 Combinatorial Interpretation of Gibonacci Numbers

To see how to interpret Gibonacci numbers combinatorially, we take a second look at
Lucas numbers. From Combinatorial Theorem 2, we know that L., counts the number of
ways to tile an n-bracelet with squares and dominoes. Notice that we can “straighten out”
an n-bracelet, by writing it as an n-tiling starting with the first tile (the tile covering cell
1) with one caveat. The caveat is that if the first tile is a domino, we need to indicate
whether it is an in-phase or out-of-phase domino. For example, the seven 4-bracelets of
Figure 2.1 have been straightened out in phased tilings in Figure 2.8. Summarizing, L,,
counts the number of phased n-tilings where an initial domino has two possible phases
and an initial square has one possible phase. The next theorem should then come as no
surprise.

Figure 2.8. The seven 4-bracelets can be straightened out to become “phased” 4-bracelets.

Combinatorial Theorem 3 Let Gy, G1, Ga, ... be a Gibonacci sequence with nonnega-
tive integer terms. For n > 1, G,, counts the number of n-tilings, where the initial tile is
assigned a phase. There are Gy choices for a domino phase and G, choices for a square
phase.

Proof. Let a, denote the number of phased n-tilings with Go and G; phases for initial
dominoes and squares, respectively. Clearly, a; = G1. A phased 2-tiling consists of either
a phased domino (Gp choices) or a phased square followed by an unphased square (G
choices). Hence as = Gy + G1 = Ga. To see that a,, grows like Gibonacci numbers we
merely condition on the last tile, which immediately gives us an = an—1 + @n-2. 0.

In order for our theorem to be valid when n = 0, we combinatorially define the
number of phased 0-tilings to be Gy, the number of domino phases.

2.4 Gibonacci Identities

Elementary Gibonacci Identities

Using this combinatorial interpretation of G, many identities become transparent. For
instance, by conditioning on the first tile of a phased tiling (see Figure 2.9), it immediately
follows that

Identity 37 Forn 2 1. G, = Gofa-2+ G1fn-1-
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First tile a phased domino:

B ]

~——— —

% a2
First tile a phased square:
[El2 3 ]
G St

Figure 2.9. A phased n-tiling either begins with a phased domino or a phased square.

The next identity is a generalization of Identity 3 from Chapter 1.
Identity 38 For m > 1, n >0, Gyn = G fn + Gm-1fn-1.

Question: How many phased (m + n)-tilings exist?
Answer 1: By definition, there are G4+, such tilings.

Answer 2: Condition on whether the phased (m + n)-tiling is breakable at cell m.
See Figure 2.10. The number of breakable tilings is G, f,, since such a tiling consists
of a phased m-tiling followed by a standard n-tiling. The number of unbreakable
tilings is G,,—1 fn—1 since such tilings contain a phased (m — 1)-tiling, followed by
a domino covering cells 7 and m +1, followed by a standard (n — 1)-tiling. Note if
m = 1, then the phase of the (-tiling is applied to the domino covering cells 1 and
2. Altogether, there are G, fr, + Gm—1fn—1 (m + n)-tilings.

phased m+n tilings breakable at m:

1 2 m-1

—l m

iﬂ m+2 m+n

Q
=

m

phased n1+n tilings unbreakable at m:

2 ml m ml m2 m+n_
c;m-l f

wl

Figure 2.10. A phased (m + n)-tiling is either breakable or unbreakable at cell m.

Identity 39 For n >0, Y ;_o Gk = Gny2 — G1.

Question: How many phased (n + 2)-tilings contain at least one domino?

Answer 1: There are Gp2 phased (n+ 2)-tilings including the tilings consisting of
only squares. So there are Gy, 42 — G} tilings with at least one domino.

Answer 2: Condition on the location of the last domino. For 0 < k < n, there are
G, tilings where the last domino covers cells k41 and k+2 as illustrated in Figure
2.11. Notice that when the last domino covers cells 1 and 2, it must have one of Go
phases. So the argument is still valid.
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m -G,,

1 2 3 4 n2 nl n ntl ni2
cHENS NN N[
1 2 3 4 n-2 nl n ntl ni2
CHENNEEN  EE[t
1 2 3 4 n-2 n-l1 n ntl pi2
7 k] =
@ - [ 2 . Gl
1 2 3 4 n2 nl n n¥l ni2
§ f * L] * Go
1 2 3 4 n2 nl n ntl nt2

Figure 2.11. Conditioning on the location of the last domino.

The next identity is a generalization of Identity 6 of Chapter 1.

Identity 40 Forn>p >0, Gnyp =Y 5 (8)Gni.

i=0 \i
Question: How many phased (n + p)-tilings exist?
Answer 1: Gp4p.

Answer 2: Condition on the number of dominoes that appear among the last p tiles.
When the last p tiles consist of ¢ dominoes and p — % squares, there are (f) ways
to arrange these tiles. The length of these p tiles is p + 4. The remaining board has
length (n+p) — (p+14) =n —i and can be tiled G,,—; ways. See Figure 2.12.

— — —
e ———

n-icells p + i cells: i dominoes, p — i squares
Gnoi (IP ) tiling

Figure 2.12. A phased (n + p)-tiling with i dominoes among the last p tiles.

Similar identities are presented in the exercises.

Simultaneous Tilings

The identities in this subsection are a little trickier since they involve tiling two boards
simultaneously. It will be convenient to think of one board as the “top board” and the
other as the “bottom board”. We begin with

Identity 41 Forn >0, Y2*, GGy = G2, — G2.
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Question: In how many ways can two boards of length 2n be given phased tilings
so that the tiling pair contains at least one square somewhere?

Answer 1: There are G%, — G such tilings, since each board can be tiled G2, Ways
and we throw away the G2 cases where both boards consist only of dominoes.

Answer 2: Let the top board consist of cells 1 through 2n and the bottom board
consist of cells 2 through 2n + 1. See Figure 2.13. Since the phased tiling pair has at
least one square somewhere, there must be at least one fault that goes through both
tilings. Condition on the location of the last fault. The last fault occurs at cell < when
both tilings are breakable at cell 2, but at no future cell. If the last fault occurs at cell
i > 2, there are G; ways to tile the top board before the fault, G;—; ways to tile the
bottom board before the fault, and just one way to tile both boards after the fault.
All tiles to the right of the fault are dominoes except for a single square in cell 241
of the board with an odd tail length. The argument is slightly different when ¢ = 1;
here the number of pairs is Gy Go. Hence for 1 < 7 < 2n, there are G;_; G; phased
tiling pairs with last fault at cell i. Altogether, we have Zf:l G;Gi-1 phased tiling
pairs with at least one square.

Fori>2.

K177 _ G
1 2 i 2n 2n+l
' T -

last fault
Fori=l.
E s S -

1 f2 2n 2n+l

Figure 2.13. A last fault at cell 3.

When the board has odd length, a similar argument yields Identity 64 given in the
exercises.

The identities of this section were all based on simultaneous tilings of two phased
boards with the same initial conditions (determined by Gp and G) for both the top and
bottom boards. However, all of these identities can be easily generalized to situations where
the initial conditions are not necessarily the same. In what follows, we shall assume that
Go,G1,Ga,. .. and Hy, Hy, Hy, . . . are both Gibonacci sequences, possibly with different
initial conditions. For instance, the next identity completely generalizes the sum of the
squares of Fibonacci numbers given in Identity 9.

Identity 42 For n > 1, GoHy + Y.2°7) G;H; = GonHs,y.

=]

Question: In how many ways can a phased 2n-board and a phased (2 — 1)-board
be tiled, where the first board has Go initial domino phases and G initial square
phases, while the second board has Hy initial domino phases and H, initial square
phases?
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G;
i 2n-1 2n
i, Tast fault

Figure 2.14. There are G; H; tilings with last fault at cell 4.

Answer 1: GZnHzn—l-

Answer 2: We Jet the top board cover cells 1 through 2n and the bottom board cover
cells 1 through 2n — 1. We condition on the last fault, if one exists. Here, since the
first board has even length, the only fault-free tilings are those that have all dominoes
in both boards, except for a single phased square in the bottom board. Hence there
are GoH, fault-free tilings. Otherwise, by the same reasoning as in the last identity,
there are G;H; tilings whose last fault occurs at cell 7, where 1 < i < 2n - 1.
Altogether our boards may be tiled GoH; + 22”'1 G;H; ways. See Figure 2.14.

=1

A similar identity results when the longer board has odd length.

Tail swapping identities
The identities of this subsection utilize the tail swapping technique from Chapter 1.

Identity 43 Let Go,G1,Ga,... and Hy, Hy, Ho, ... be Gibonacci sequences. Then for
0 S m s n, GmHn y GnHm = (_l)m(GOHn—m - Gn_mHO)-

Set 1: The set of tiling pairs of a phased m-board and a phased n-board, where the
initial conditions of the m-board are determined by Gy, G1, and the initial conditions
of the n-board are determined by Hp, Hj. This set has size G Hy.

Set 2: The set of tiling pairs of a phased n-board and a phased m-board, where the
initial conditions of the n-board are determined by Gp, G, and the initial conditions
of the m-board are determined by Hy, H;. This set has size GpHp,.

Correspondence: The identity makes sense once we draw the appropriate picture.
Place an m-board on top of an n-board, as in Figure 2.15. Tail-swapping provides a
one-to-one correspondence between the faulty tilings of Set 1 and Set 2. The number
of fault-free tilings depends on the parity of m. As illustrated in Figure 2.15, when m
is even, the fault free tilings of Set 1 consist of m/2 dominoes in the top board and
the bottom board begins with a phased square followed by m/2 dominoes, followed
by an (unphased) (n—m— 1)-tiling. Consequently, the number of fault-free tilings of
Set 1 is GoHj frn—m—1. By the same logic, there are G1 Ho fn—m-1 fault-free tilings
of Set 2. Consequently, when m is even, the difference in size between Sets 1 and 2
is the number of fault-free tilings of Set 1 minus the number of fault-free tilings of

Set 2. That is,
GmHn - GnHm = GOHlfn—m—l - HOGlfn—m—l-

However, it is combinatorially clear that H, ;-1 = Hn—m — Hofn-m-2 since
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Go

Hlf;x-mi-l

ﬁl-m-’-l

Glfr.t—mi-l

Hp

Figure 2.15. When m is even, there are GoH)fn—m-1 fault-free tilings in Set 1, and
G1Hp fn—m—1 fault-free tilings in Set 2.

both count (n —m)-tilings that begin with a phased square. Similarly, G1 fp—m—-1 =
Gn-m — GOf n—m—2. Thus

GmH, — GpHpy, = GoHpin — HOGn—ma
since the GoHo f,—m—2 terms conveniently disappear.

At first glance, the next identity looks like a generalization of Identity 43 but it is
nothing more than a translation with a change of variables. If we translate the Gibonacci
sequence Hy, Hy,Ha,... to Hy, Hy, Hi 2, we obtain another Gibonacci sequence.
Then if we substitute n = m + h, we obtain

Identity 44 Let Go,G1,Ga, ... and Hy, Hy, Hy, ... be Gibonacci sequences. Then for
myhk 2 0, GmHmihik — GminHmik = (=1)™(GoHp i — GrHy).

The following generalization of Identity 33, will result in a magical application.
Identity 45 For 0 < m <0, Gpym + (-1)"Gp—mn = Go L.

Set 1: The set of phased (n 4 m)-tilings. This set has size Gy, 4.m.

Set 2: The set of ordered pairs (A, B), where A is a phased n-tiling, and B is an
m-bracelet. This set has size G, L.

Correspondence: The identity is clearly true when m = 0, so we assume m > 1.
We create an almost one-to-one correspondence between these two sets. Let P be a
phased (n+m)-tiling. If P is breakable at cell n, we create a phased n-tiling A from
the phased tiling of the first n cells of P. Using cells n + 1 through n + m create
B, an in-phase m-bracelet, as in Figure 2.16. If P is not breakable at cell n, then
create the tiling pair of Figure 2.17, where the top tiling is the phased (n — 1)-tiling
from cells 1 through n — 1 of P. The bottom tiling is an unphased (m + 1)-tiling,
beginning with a domino, from cells n through n +m of P Now perform a tail
swap, if possible, to create a pair of tilings with sizes n and m, where the n-tiling
is phased, and the m-tiling is unphased, but begins with a domino. These become a
phased tiling and out-of-phase bracelet in the natural way.
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P: E;’)z

1 2

Figure 2.16. Breakable phased (n + m)-tilings naturally become phased n-tilings and with an
in-phase m-bracelet.

"o

last fault

@ ! length #-1

1 nl n
length m+1
n ntl n+m

t tailswap
last fault

length

n-l n

length m
n+m-1

Figure 2.17. Unbreakable phased (n -+ m)-tilings become phased n-tilings and with an out-of-
phase m-bracelet.
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apA}! |

G n-m+1
n-m

Figure 2.18. When m is even, these pairs are unachievable.

When is tail swapping not possible? When m is even, the (m + 1)-tiling must
have at least one square, resulting in at least one fault. Thus when m is even, we
can always tail swap, but there are G,,_,,, unachievable tiling pairs where the bottom
m-tiling consists of all dominoes and the phased n-tiling has only dominoes in cells
n—m-+1 through n. See Figure 2.18. Thus when m is even, G Ly, = Gram+Gn—m
as desired. By a similar argument, when m is 0dd, Gp4m = GnLym + Gp—m.

The following identities are consequences of Identity 44, but can be proved directly
as well. We leave these to the reader.

Identity 46 For n > 1, Gp41Gp—1 — G2 = (-1)*(G? — GoG>).
Identity 47 For 0 <m < n, Hy_p = (=1)™(Frn41Hp — FrnHp ).
Identity 48 Forn>1and 0 <m <n,

Gn+m . (_l)mGn-m td m(G -1+ Gn+1)-

A Gibonacci Magic Trick

Let’s take a break from combinatorial proofs for just a moment. If you have made it this
far into the book, we reward you with a bit of mathemagics.

The mathemagician hands a sheet of paper as in Figure 2.19 to a volunteer and says,
“Secretly write a positive integer in Row 1 and another positive integer in Row 2. Next,
add those numbers together and put the sum in Row 3. Add Row 2 to Row 3 and place
the answer in Row 4. Continue in this fashion until numbers are in Rows 1 through 10.
Now using a calculator, if you wish, add all the numbers in Rows 1 through 10 together.”
While the spectator is adding, the mathemagician glances at the sheet of paper for just
a second, then instantly reveals the total. “Now using a calculator, divide the number in
Row 10 by the number in Row 9, and announce the first three digits of your answer.
What's that you say? 1.61? Now turn over the paper and look what I have written.” The
back of the paper says “I predict the number 1.61”.

The explanation of this trick involves nothing more than high school algebra, For the
first part, observe in Figure 2.20 that if Row 1 contains = and Row 2 contains y then
the total of Rows 1 through 10 wilt sum to 55z + 88y. As tuck would have it, (actually
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OO |N|S| || =

p—t
o

TOTAL

Figure 2.19. Enter a Gibonacci sequence, with positive integers in Rows 1 and 2.

T

Y
z+y
z+ 2y
2z + 3y
3z + Sy
5x + 8y
8z 413y
13z + 21y
21z + 34y

TOTAL 55x + 88y

DN |D]|o |||

[y
o

Figure 2.20. The sum of the 10 numbers is Row 7 times 11.

by the next identity), the number in Row 7 is 5z + 8y. Consequently, the grand total is
simply 11 times Row 7.

As for the ratio, it’s all about adding fractions badly. For any two fractions § < § with
positive numerators and denominators, the quantity ‘;—ﬁ is called the mediant (sometimes
called the freshman sum) and it’s easy to show that

a a+c ¢

b <b+d - d
Consequently, the ratio of (Row 10)/(Row 9) satisfies

21 21z P 21z + 34y b 3y _ 34
13 13z 13z+2ly 21y 21

The first part of this trick was a special case of the following identity, which is an
immediate consequence of Identities 39 and 45.

= 1.619....

1.615... <

Identity 49 For n.> 0, i+ G; = Gans2Lonta-



32 CHAPTER 2. GIBONACCI AND LUCAS IDENTITIES

2.5 Notes

Edouard Lucas (pronounced LOO-KAH) was the first person to call the sequence 0, 1,1, 2,
3,5,8, ..., the Fibonacci sequence. Combinatorial interpretations of Lucas numbers appear
in [8, 20, 44, 54] including independent sets of vertices in cycle graphs, circular binary
sequences with no consecutive zeros, and tilings that are not allowed to begin and end
with a domino.

A combinatorial interpretation for Generalized Fibonacci numbers appears in [13].
Other generalizations of Fibonacci numbers will appear in the next chapter.

2.6 Exercises

Prove each of the identities below by a direct combinatorial argument.
Identity 50 For n > 2, L,, = fr—1 + 2fn—2.

Identity 51 Forn >0, f,—1 + L, = 2f,.

Identity 52 For n 2 0, 5f, = L1 + 2L,.

Identity 53 Forn >0, 5f2 = L2, +4(-1)".

Identity 54 Forn>1, L2+ L +---+ L2, | = fan-1 — 2.

Identity 55 For n >0, Lan41 — Lan—1 + Lan-3 — Lon—s + -+ - £ L3 F L1 = fon4a-
Identity 56 For n > 2, L2 = L,—2Ln—1Ln41Ln4a +25.

Identity 57 Forn >0, 30 L L = (n+ 1)L, + 2f,.

Identity 58 Forn>2 55" 2 f. fn_3-r =nLp — fay.

Identity 59 For n > 2, Gi = Gn42Gn41Gn-1Gn—2 + (G2Go — G2)2.
Identity 60 Forn > 1, L2 = L,41Lp1 + (—1)*- 5.

Identity 61 Forn >0, 3r_, Gor—1 = Gan — Go.

Identity 62 For n >0, Gy + Y ;_, Gok = Gopt1-

Identity 63 For m,p,t > 0, Gm(e+1)p = Sbeg (O) FifP 2 Gmsss
Identity 64 Fori>1, Y1 Gi_1Giys = G2 - G2.

Identity 65 For n > 2, G%,; = 4Gn—1G, +G2_,.

Identity 66 For n>1, Y7 Gi—1Giyo = G — G2.

Identity 67 For n > 1, GoGh1+ Y1) G? = GGy

Identity 68 Let Go,G1,Ga,... and Hy, Hy,H,,... be Gibonacci sequences, then for
1<m<n GuHy —Gp-1Hp41 = ("l)m[GoHn-m+2 . GlHn—m+1]'

Identity 69 Gn+1 + Gn + Gn—l + 2Gn—2 + 4Gn,—3 + 8Gn_4 4 .- + 2n-1G0 .
2*(Go + Gy).

Identity 70 Forn>0, G2, 3+ G2 =2G%,, +2G2,,.
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Other Exercises

1. Translating a Gibonacci sequence Gg, G, Ga,... by m gives another Gibonacci

sequence G, Grmg1, Gma2, - - - - Show how to derive Identity 38 from Identity 37
by translating G; to Giyn,-

2. There are many combinatorial interpretations for Lucas numbers. Show that the
interpretations below are equivalent to tiling a circular board with squares and
dominoes by creating a one-to-one correspondence.

(a) For n > 2, L, counts circular binary sequences with no consecutive 0s.

(b) For n > 1, L, counts tilings of an (n + 1)-board that do not begin and end
with a domino.






CHAPTER 3

Linear Recurrences

Definition Given integers ¢y, . . . , ¢k, a kth order linear recurrence is defined by ag, a3,...,
k-1, and for n > k, an = c1an—1 + 2652 + -+ + CxAn—k-

Definition Given integers s and ¢, the Lucas sequence of the first kind is defined by
Uo=0,U1 =1 and for n > 2, U, = sU,_; + tUy,_,. For combinatorial convenience,
we also define for n > —1, up, = U,41. When s = t = 1, these are the Fibonacci
numbers: U, = F;,, and u, = f,.

Definition Given integers s and ¢, the Lucas sequence of the second kind is defined by
Vo=2,Vi=sand forn > 2, V, = sV,,_; +tV,,_o . When s = ¢ = 1, these are the
Lucas numbers: V,, = L,,.

Generalizing the Fibonacci Numbers

The recurrence for Fibonacci numbers can be extended in many different directions. The
phrase “Generalized Fibonacci Number” has been used to describe numbers generated by
such recurrences as

Op = 0n-1+0n—2

Qp =0n-1+an2+ -+ ang
On = Qn—1 + Qn—k

On = SGp—1 +lap—2

with various assumptions about the initial conditions. In this chapter, we shall go even
further and combinatorially explain numbers generated by kth order linear recurrences

Gn = C1Gn-1 +C20n—2 + -+ +Crln—

where ¢, ¢2,...,Cx are nonnegative integers. We shall first describe these under the
“ideal” initial conditions for combinatorial purposes, then we deal with other initial con-
ditions. By the end of the chapter, we will even have combinatorial interpretations for
identities where the coefficients ¢;,...,c) are negative, irrational or complex numbers,
with any initial conditions.

35
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3.1 Combinatorial Interpretations of Linear
Recurrences

When the initial conditions are just right, kth order linear recurrences have an especially
simple combinatorial interpretation.

Combinatorial Theorem 4 Let ¢y, cz, - - ., €k, be nonnegative integers. Let ug,uy, . .. be
the sequence of numbers defined by the following recurrence: For n > 1,

Up = ClUn—1 + CoUn-2 + *** + CkUn—k (3.1

with “ideal” initial conditions up = 1, and for j < 0, u; = 0. Then for all n > 0, u,
counts colored tilings of an n-board, with tiles of length at most k, where for 1 <i < k,
each tile of length i is assigned one of c; colors.

Proof. The theorem is clearly true for n < 0. We proceed by the now familiar argument
of conditioning on the last tile. For n > 1 and 1 < ¢ < k, an n-board having a final
colored tile of length ¢ occurs ¢c;u,—; ways. Summing over all possible choices of  yields
the recurrence in (3.1). <

When k = 2, the ideal initial conditions generate Lucas numbers of the first kind and
Combinatorial Theorem 4 reduces to

Combinatorial Theorem 5 Let s,t be nonnegative integers. Suppose ug =1, u; = s
and for n 2 2,
un = su,;._l + t'un_z. (3.2)

Then for all n > 0, u, counts colored tilings of an n-board with squares and dominoes,
where there are s colors for squares and t colors for dominoes.

When s =t =1, u, is a Fibonacci number: u,, = f, = F,_;.

In the last chapter, we saw how closely the Lucas numbers interacted with the Fi-
bonacci numbers. In the same way, there exists a natural companion sequence for u,,, the
Lucas numbers of the second kind. When s =t = 1, V/, is the traditional Lucas number:
Vi = L. We leave it to the reader to prove the following.

Combinatorial Theorem 6 Let s,t be nonnegative integers. Suppose Vo = 2, V; = s
and for n 2> 2,
Va=8Vp +tV,_a. (3.3)

Then for all n > 0, V,, counts colored bracelets of length n, where there are s colors
Jor squares and t colors for dominoes.

Nearly all of the identities of the first two chapters generalize seamlessly by just
adding a splash of color. For example, the Fibonacci-Lucas identity fo,_y = fn—1Ln is
unchanged in the colorized version.

Identity 71 For n > 1, ugpn-1 = up—1Va.

The proof is exactly the same as in Identity 33. We simply work with colored squares
and dominoes instead of uncolored ones.

Recall Identity 34 from Chapter 2: For n > 0, 5f, = Ly, + Ly42. In our proof,
every n-tiling generated five bracelets, and every bracelet of length . or length n+ 2 was
created exactly once. In the colorized version,
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Identity 72 For n > 0, (s + 4t)us = tV, + Viyo.

The proof is structured exactly as in Identity 34, but now each colored n-tiling gen-
erates s + 4t bracelets. In the process, every colored n-bracelet is generated ¢ times and
every colored (n + 2)-bracelet is generated exactly once. For more details, see the ap-
pendix of solutions. Incidentally, the quantity s + 4t shows up frequently in generalized
Fibonacci and Lucas identities, and is called the discriminant.

In Chapter 8, we prove that even the greatest common divisor property for Fibonacci
numbers generalizes without a hitch: Let s, be relatively prime nonnegative integers and
let Uy, U, be Lucas numbers of the first kind.

ged(m, n) = g = ged(Un, Uy) = U,
For more identities, see the exercises at the end of this chapter.

How do we accommodate arbitrary initial conditions? As with the Gibonacci numbers
of the last chapter, the initial conditions introduce a phase for the initial tile. We begin
with second-order linear recurrences.

Combinatorial Theorem 7 Let s,t, ag, a; be nonnegative integers, and for n 2> 2, define
Gp = SQp-1 + tan—2-

For n 2 1, ay,, counts the number of ways to tile an n-board with squares and dominoes
where each tile, except the initial one has a color. There are s colors for squares and t
colors for dominoes. The initial tile is given a phase; there are a, phases for an initial
square and tag phases for an initial domino.

Proof. The number of ways to tile a 1-board (using a single phased square) is a;. The
number of ways to tile a 2-board (with two squares or a single phased domino) is sa; +
tap = az. Proceeding inductively, and conditioning on the last tile, we see that, for n > 2,
the number of ways to tile an n-board is sap—; + ta,—2 = @y, as desired. o

We call such a tiling a phased colored tiling. For consistency, we say that a 0-board
has ag phased colored tilings.

Finally, we generalize Combinatorial Theorem 4 to accommodate other initial condi-
tions.

Combinatorial Theorem 8 Let ¢;,¢3, .. .,Ck, 0,01, -. . ,ak—1 be nonnegative integers,
and for n 2 k, define

On = C1Gp-1 + C20n—2 +* ** + CkCn—k- (34
If the initial conditions satisfy
i-1
a; > ZCjai—j (3.5)
=1

for 1 <i Lk, then for n 2 1, a,, counts the ways to tile an n-board using colored tiles
of length at most k, where each tile, except the initial one, has a color. Specifically, for
1 < i < k, each tile of length i may be assigned any of c; different colors, but an initial
tile of length i is assigned one of p; phases, where

i-1

bi=ai— Z C;Qi—j. (3.6)
j=1
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Proof. By inequality (3.5), p; is a nonnegative integer for 1 << k. For1 <n < k,a
phased colored tiling of an n-board consists of either a single phased tile of length n, or
it ends with a colored tile of length i for some 1 < i < n—1 . Thus the number of such
tilings is equal to

n-1 n-1 n-1
Pnt zcian—i =10n— chan—j) + E CiGn—i = Qn.

i=1 j=1 i=1

For n > k, there must be more than one tile. Hence the last tile (say of length ¢) can
be assigned one of ¢; colors, and is preceded by a phased colored tiling of length n — i.
Hence the number of phased colored n-tilings satisfies recurrence (3.4), as desired. ¢

Notice for a kth order linear recurrence equations (3.6) and (3.4) imply that

k-1
Pr =0k — ) Cik—; = Ckao, 3.7)

i=1

which is always nonnegative. Thus inequality (3.5) is always valid for ¢ = k and obviously
also true for ¢ = 1. This is why no restrictions are imposed on the initial conditions of
second-order recurrences.

Although for k¥ > 2, Combinatorial Theorem 8 requires that the initial conditions
satisfy inequality (3.5), the identities we prove depending on inequality (3.5) will be valid
for all initial conditions. The proof of this can be derived using linear algebra as presented
in [4], or by the combinatorial explanation at the end of this chapter.

Notice that the ideal initial conditions of Combinatorial Theorem 4 were chosen so
that foreach 1 < i<k, p; = u; — E;;i Cjui-j = C;ug = ¢;. Hence an initial tile of
length i has as many choices as any other tile of length 7. Thus u,, counts the number of
unphased colored tilings of length n, as asserted by Combinatorial Theorem 4.

3.2 Identities for Second-Order Recurrences

The identities and proofs in this section are generalizations of identities presented in
Chapter 2. Here we consider sequences ag, a1,02,... generated by the recurrence: for
n 2 2, Gp = San-1 + tan—2, Where ap and a, are arbitrary nonnegative integers. By
Combinatorial Theorem 7, a,, counts the number of phased colored n-tilings, where an
initial square has p; = a, possible phases, and an initial domino has p, = tag possible
phases. We let u, count the number of unphased colored n-tilings, where u,, is generated
by the same recurrence, where uo = 1 and u; = s. We assume that s and ¢ are nonnegative
integers. Notice that when s =t =1, an = Gy, the nth Gibonacci number and uy, = f,.
Our first identity generalizes Identity 38, Grmyn = Gmfn + Gm—1 fn—1.

Identity 73 For m,n 2 1, Gmin = GmUn + t0m—1Un—1.

Question: How many phased colored (m 4 n)-tilings exist (where, as usual, we have
ay phases for an initial square and ¢ag phases for an initial domino)?

Answer 1: By Combinatorial Theorem 7, there are a4 such tilings.
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phased colored m+n tilings breakable at m:

1 2 ml m_ mtl m2 m+n

phased colored m+n tilings unbreakable at m:

1 2 ml m mtl mi2 m+n_

9 el Uy

Figure 3.1, A phased colored (m + n)-tiling is either breakable or unbreakable at cell m.

Answer 2: Condition on whether the phased colored (m + n)-tiling is breakable
at cell m. See Figure 3.1. The number of breakable tilings is e, u, since such a
tiling consists of a phased colored m-tiling followed by an unphased colored -tiling.
The number of unbreakable tilings is a,,—3tu,—1 since such tilings contain a phased
(m—1)-tiling, followed by a colored domino covering cells m and m+-1, followed by
an unphased colored (n — 1)-tiling. (The argument when m =1 is a little different.)
Altogether, there are a,,u, + tam—1un—1 phased colored (m 4 n)-tilings.

Next we generalize Identity 39 for (unphased) colored tilings where ap = 1,a; = s,
and for n 2 2, a, = sap—1 +1an—2.

Identity 74 For n > 2,
an—1=(s—1)ap—1 +(s+t—1)|ag+a1+---+a-3]

Question: How many colored n-tilings exist, excluding the tiling consisting of all
white squares?

Answer 1: Since ag = 1, a; = s is equivalent to the ideal initial conditions, there
are a, — 1 such tilings.

Answer 2: Here we partition our tilings according to the last tile that is not a white
square. Suppose the last tile that is not a white square begins on cell k. If k = n, the
last tile is a square and there are s — 1 choices for its color. There are a,—; colored
tilings that can precede it for a total of (s — 1)a,-; tilings ending in a nonwhite
square. If 1 < k < n— 1, the tile covering cell k can be any colored domino or a
nonwhite square. There are s+ ¢ — 1 ways to pick this tile and the previous cells
can be tiled ax_; ways. Altogether, there are (s — 1)an—1 + Y oy Y(s+t—1)ar—
colored n-tilings, as desired.

Notice how easily the argument generalizes if we partition according to the last tile
that is not a square of color 1 or 2 or ... or ¢. Then the same reasoning gives us

Identity 75 Forany1<c<s, forn2>0,
—¢" = (8 —c)an—1 + ((s — c)c+t)[aoc” S S A SRR o Y
As with noncolored tilings, identities that count pairs of colored tilings can still be

obtained by conditioning on the last fault and tail swapping. See the exercises for more
examples.
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3.3 Identities for Third-Order Recurrences

Here we consider sequences ag, a3, a2, ... generated by the recurrence: for n > 3, an =
€1Gn—-1 + C20,—2 + C3a,-3, Where ag, a;,a2 are nonnegative integers. For the simplest
combinatorial interpretation, we shall require ¢, ¢z, c3 to be nonnegative and to satisfy
inequality (3.5), a2 2> c;a;. Then by Combinatorial Theorem 8 and equation (3.7), a,
counts the number of phased colored n-tilings with squares, dominoes and (length 3)
trominoes where there are ¢; colors for squares, co colors for dominoes, ¢3 colors for
trominoes, and an initial square has p; = a; possible phases, an initial domino has
P2 = ag — c1a; possible phases and an initial tromino has p3 = c3ag possible phases.
We let u, count the number of unphased colored n-tilings, where u,, is generated by the
same recurrence and ug = 1, u; = ¢;, and up = cf + co.

Identity 76 For m,n > 2, Gmin = GmUn+C20m—1Un—1+C3(0Gm—2Un—1+0m—1Un—2).

Question: How many phased colored (m -+ n)-tilings exist using squares, dominoes
and trominoes where there are ¢; colors for squares, ¢, colors for dominoes, ¢3 colors
for trominoes, and an initial square has p; = a; possible phases, an initial domino
has ps = a2 — ¢;a; possible phases and an initial tromino has p3 = c3aq possible
phases?

Answer 1: By Combinatorial Theorem 8, there are a4, such tilings.

Answer 2: Condition on the length of the tile (if any) covering cells m and m+1. See
Figure 3.2. As in the proof of Identity 73, the number of breakable tilings is @,,un,
and the number of ways for cells m and m+ 1 to be covered by the same domino is

@m—1C2Un—~1. There are two ways that cells m and m-+1 can be covered by the same
tromino. As illustrated in Figure 3.2, this can occur @,,—2C3Un—1 + Gm—1C3Un—2

phased colored m+n tilings breakable at m:

Jd 2 ml m_ mtl m2 m+n

—

alll u"

phased colored rm++n tilings unbreakable at m:

1 2 ml m mtl pi2 min
Al nl
1 2 _mlm m¥l mi2 m+n
Apa nl
1 2 ml m mtl 2 m+n

—— —

u

n2

Figure 3.2. A phased colored (m + n)-tiling is either breakable at cell m, has a domino covering
cells m and m + 1, or has one of two types of trominoes covering cells m and m + 1.
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ways. Altogether, there are amup + C28m—1Un—1 + c3(Am—-2Un—1 + Gn-1Un—-2)
phased colored (m + n)-tilings.

The next identity is a generalization of an identity satisfied by the Tribonacci numbers
(defined by T}, = Ty + T2 + T3, Where To =71 = 1, T = 2):

- 1
2T = 5(Toi2 +Tn - 3).

i=1
More generally, for third-order recurrences, we have:

Identity 77 For n > 0,

n
¢t (cra2 + czag) + (c1c2 + ¢3) z ¢t 7a; = c1an42 + C30n.

=1

Question: How many phased, colored (n + 3)-tilings exist using ¢; colored squares,
c2 colored dominoes and c3 colored trominoes with initial phases as described in
Combinatorial Theorem 8 and that end with a square or a tromino?

Answer 1: By conditioning on the last tile, there are ¢yan+2 + c3a, such tilings.

Answer 2: Condition on the location of the last domino or tromino. For 1 < i <
n, we count phased colored (n + 3)-tilings whose last domino or tromino begins
at cell Z + 1. Notice that our ending condition disallows the possibility of a last
domino beginning at cell n + 2. There are (c;c2 + c3)cy ~*a; such tilings since cells
i+ 1,74 2,7+ 3 consists of either a single tromino or a single domino followed
by a square (c3 + cpc; choices), the tiles following cell 7 4+ 3 must be squares
(c’l"i choices) and cells 1 through ¢ may be tiled arbitrarily (a; choices). The only
uncounted tilings are those that begin with a phased tile, followed by all squares.
There are psc} = caapct such tilings that begin with a tromino. Otherwise, we
have a 2-tiling followed by all squares, which can be done agcj‘“ ways. Hence
these tilings can be created in c}(c3a + c1a2) ways. Altogether, our tilings can be

2 "ta; ways.

constructed c(c1az + c3ap) + (12 +¢3) Y iy €]

We end this section with special types of integer sequences determined by third-order
linear recurrences. The 3-bonacci numbers are defined by u, = up—1 + up—3, With

forl<i<nm
SHIEEN DRSO
a2 Tl 2 143 ne3y tromino
a, ast domino or tromino v :;uare
. only
© e
12 il 42 43 nt3
a

Figure 3.3. Conditioning on the last domino or tromino, when the last tile must be a square or
tromino.
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ideal initial conditions up = 1 and u; = 0 for § < 0. The first few 3-bonacci numbers
are 1,1,1,2,3,4,6,9,13,19, 28, 41,60, 88,129,189, .... The next identity extends the
argument of Identity 4 in Chapter 1.

Identity 78 Let u, be defined for n > 1 by uy, = tn—1 + un—3 Where ug = 1 and
u; =0 for j < 0. Then for n > 0,

z(n—i%) .

i20
Question: How many unphased, uncolored n-tilings exist that use only squares and
trominoes?

Answer 1: By Combinatorial Theorem 4, u,, counts the number of unphased uncol-
ored tilings of an n-board with squares and trominoes.

Answer 2: Condition on the number of trominoes. Provided that ¢ < n/3, an n-board

with ¢ trominoes must have 7 — 3i squares, and therefore n— 2i tiles altogether. There

are ("%) ways to arrange these tiles.

For a colorful generalization, we consider generalized 3-bonacci numbers.

Identity 79 Let u,, be defined for n > 1 by u,, = sup—1 + tun—3 where ug = 1 and

u; =0 for j <0. Then
z ("' - 22) fisn% =gy
>0V °
Question: How many unphased, colored n-tilings exist where we have s colors for
squares and ¢ colors for trominoes?

Answer 1: By Combinatorial Theorem 4, u,, counts the number of unphased colored
tilings of an n-board with squares and trominoes.

Answer 2: Condition on the number of trominoes. Provided that i < /3, an n-board
with ¢ trominoes must have n— 3¢ squares, and therefore n— 2i tiles altogether. There
are (”‘2.2‘) ways to arrange these tiles, then ¢s™~3¢ ways to assign them colors.

We conclude this section with one more 3-bonacci identity, extending Identity 5 from
Chapter 1.

Identity 80 Let u,, be defined for n > 1 by un = un—y + un—3 where ug = 1 and
uj =0 for j < 0. Then

2"’:2":2": (n—b—c) (n-a—c) (n—a—b) :
= U3n+2-
a=0 b=0 c=0 a b B "

Question: How many unphased, uncolored (3n + 2)-tilings exist using only squares
and trominoes?

Answer 1: ugnq2.

Answer 2: The number of squares in any tiling of a (3n+2)-board must be 2 greater
than a multiple of 3. Hence there will exist two goalpost squares, say located at cells
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1 2 3 4 5 6 7 8 91011121314
Figure 3.4. The number of ways to arrange the tiles within the three regions defined by the
goalposts z and ¥ is () (3) (3).

z and y, such that there are an equal number of squares to the left of z, strictly
between z and y, and to the right of y. For example in a tiling with eight squares,
z and y are the cells occupied by the third and sixth square. See Figure 3.4. We
condition on the number of trominoes in the three regions defined by the goal posts.
If the number of trominoes in each region is, from left to right, a, b, c, then there are
a total of @ + b+ ¢ trominoes and (3n +2) — 3(a + b + ¢) squares, including the
two goalpost squares. Hence each region has n — (a + b + ¢) squares. The leftmost
region has n — b — ¢ tiles, @ of which are trominoes, and there are (*~2~°) ways
to arrange them. Likewise the tiles of the second and third region can be arranged
("~27°) ways and ("~%"") ways, respectively.
As a, b, and c vary, we obtain the total number of (3n + 2)-tilings as
iii(ﬂ b— c)(n a-— c)(n a— b)
b c

a=0 b=0 c=0

3.4 Identities for kth Order Recurrences

While all of the previous identities can be generalized to kth order recurrences, some of
which are explored in the exercises, we finish this section with two identities that are
particularly elegant.

Identity 81 Let gy, be the kth order Fibonacci sequence defined by g; = 0 for j < 0,
go =1, and for n > 1, gn = gn—1 + Gn—2 + - - + gn—k. Then for all integers n,

+np + - + 1)
In "ZZ Z (nl nl?';z' !nk ’

np n2

where the summation is over all nonnegative integers 1y, n, . . . , T, Such that ny +2nz+
ot kng=n.

Question: How many unphased, uncolored n-tilings exist where we are allowed tiles
of lengths at most k.
Answer 1: By Combinatorial Theorem 4, gn.

Answer 2: Condition on the number of tiles of each length. If for 1 < ¢ < k there
are n; tiles of length i, then we must have ny + 2nz + - - - + kny, = n. The number
of ways to permute these tiles is given by the multinomial coefficient

(n1 +n2 +“'+nk) (n1+n2+-- +nk)'
N13M2y -+, Tk nylng! - - - !

Finally, we generalize Identity 80 to k-bonacci numbers.
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Identity 82 Let u, be the k-bonacci number defined for n > 1 by un = Un—1 + Un—k
where ug = 1 and for j < 0, u; = 0. Then for n > 0, Upn4(x-1) equals

io io ‘e io (n—(32+2;3l+...+$k)) (n-(tc1+i:;+--.+zk)) ven (n-(z”"?;k'"""zk-l)).
21 =0 Z2= Tp=

Question: How many unphased uncolored (kn + (k — 1))-tilings exist where we are
only allowed squares and (length k) k-ominoes?

Answer 12 gpn 4 (k-1)-

Answer 2: The number of squares in any tiling of a (kn+ (k — 1))-board must be
k—1 greater than a multiple of k. Now there will exist k—1 goalpost squares dividing
our board into k regions, each containing an equal number of squares. For 1 <7 <k,
let z; denote the number of k-ominoes in region %, then the number of squares in
each region will be n— () +z2+- - -+ ). The number of ways to permute the tiles
in region i is given by the binomial coefficient ("'(“”"'”’:.""""‘)"'”"), as desired.

3.5 Get Real! Arbitrary Weights and Initial Conditions

In this chapter, we have developed a combinatorial interpretation for any sequence of
numbers a,, defined by a kth order linear recurrence. To summarize, we were given initial
conditions ag, ay,...,ax-1, and for n > k,

Qp = €1Qn-1 + C20n-2 + -+ + Crln—k.

By Combinatorial Theorem 8, a,, counts the number of phased, colored tilings of length
n where each tile, except for the first one, is assigned a color. For 1 < ¢ < k, a length 4
tile can be assigned one of ¢; colors. The initial tile is assigned a phase. For 1 < i <k,
an initial tile of length  is assigned one of p; phases where p; = a; — E;;ll CjGi—j.

The above interpretation only makes sense when ay, . ..,ax-1,€),..-,Ck, and py,...,
Px. are nonnegative integers. And yet, most of the identities proved in this book remain
true when these quantities are negative or irrational or complex numbers (or from any
commutative ring). This section illustrates how combinatorial arguments can still be used
to overcome these apparent obstacles.

Suppose that every c;, a; and p; is chosen from the set of complex numbers. (Some
of them could be nonnegative integers, but we don’t require it.) Instead of assigning
a discrete number of colors for each tile, we assign weights. For 1 < § < k, tiles of
length 7 have weight c; except for the initial tile which has weight p; as defined above.
We define the weight of an n-tiling to be the product of the weights of its individual
tiles. For example, the 13-tiling “tromino-square-domino-domino-square-tromino-square”
has weight (c1)%(c2)?(cs)? with ideal initial conditions and has weight p3(c; )3(c2)2(cs)
with arbitrary initial conditions. By essentially the same argument as used in proving
Combinatorial Theorem 8, it follows that for n > 1, a,, is the sum of the weights of all
weighted n-tilings, which we call the total weight of an n-board.

If X is an m-tiling of weight wx and Y is an n-tiling of weight wy, then X and Y
can be glued together to create an (m + n)-tiling of weight wxwy. If an m-board can be
tiled s different ways and has total weight a,, = wy + w2 +-- - 4+ w, and an n-board can
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be tiled ¢ ways with total weight a, = x; + 2 + - - - + ¢, then the sum of the weights
of all weighted (m + n)-tilings breakable at cell m is

s t

DD wizi=(wr+wpte W) (@1 + T2+ e+ Tt) = Gl
i=1 j=1

Now we are prepared to revisit some of our previous identities using the weighted
approach. For Identity 73 where squares have weight s and dominoes have weight £, we
find the total weights of an (m -+ n)-board in two different ways. By definition, the total
weight iS @,,+n. On the other hand, the total weight is comprised of the total weight of
those tilings that are breakable at cell m (a,,u,) plus the total weight of those tilings that
are unbreakable at cell m (a,,—1tun—1).

For identities like Identity 87, we define the weight of a tiling pair to be the product
of the weights of all the tiles, and define the total weight as before. Next we observe that
tail swapping preserves the weight of the tiling pair since no tiles are created or destroyed
in the process. Consequently, the total weight of the set of faulty tiling pairs (X,Y’) where
X and Y are n-tilings equals the total weight of the faulty tiling pairs (X’,Y”), where
X’ is an (n+ 1)-tiling and Y” is an (n — 1)-tiling. The fault free tiling pair, for the even
and odd case, will consist of n dominoes and therefore have weight ¢ Hence Identity
87 remains true even when s and ¢ are non-nonnegative integers.

3.6 Notes

Some of this material originally appeared in [4] and [10), and was developed with un-
dergraduate Chris Hanusa. Identities 104 and 105 were originally proved by algebraic
means in [59]. Exercises 3 and 4 were suggested to us by Peter G. Anderson. Exercise
5 is an alternate colored tiling interpretation of kth order linear recurrences which avoids
the restrictions on a; given by inequality (3.5) suggested to us by Dan Velleman and Bill
Zwicker.

For an analytic approach to the same material, consult [30].

3.7 Exercises
Please provide combinatorial proofs for the identities below.

For Identities 83 through 96, u,, and V,, are defined by equations (3.2) and (3.3). That
is, s and ¢ are nonnegative integers, up =1, vy =85, o =2, V1 = s, and for n > 2,
Up = SUp—1 +tun—2, and V, = sV +tVy2.

Identity 83 For n > 2, V, = up +tup—.
Identity 84 For n >0,
Usny1 = Sfup +uz + -+ +ugn) + (E — s +us +--- + Ugn—1)-

Identity 85 For n > 0,
ugn — 1= s[ug +ug + -+« +ugna] + (¢ — 1)[uo + uz + - - + Uzn—2)-
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Identity 86 Forn >0,

n
-k
s z w2t F = upunga.
k=0

Identity 87 For n >0, 2 = up41un-1 + (—1)"t".

Identity 88 For n > 1 > 1, u2 — Up—plinsr = (—t)* "2 _,,

Identity 89 For n > 1, V2 = Vo1 Voo + (8% + 4t)(—2)".

Identity 90 For n > 7> 1, V2 = VayrVaer + (82 + 4t) (=) "H02_,.
Identity 91 For n > 0, Van = V2 — 2(~)"™.

Identity 92 For n > 1, 2u,, = sup—1 + Vp.

Identity 93 For n > 0, (5% + 4t)u, + Vi1 = 2Viy2.

Identity 94 Form 20, n > 1, 2upmin = UmVa + Vinp1¢n—-1.

Identity 95 For m,n >0, 2Vinyn = Vin Vi + (8% + 48)um—1Un—1.
Identity 96 For n >0, V2 = (s + dt)uZ_, +4(—-t)".

For Identities 97 through 103, find combinatorial proofs for the quantities defined by the
second-order recurrence a, = $a,—1 + ta,—2, for n > 2, where s, t,ap and q; are given
nonnegative integers.

Xdentity 97 For n >0, a3, — t?"a% = s 2" 2n—tq;_1a;.

Identity 98 For n >0, a2, ., — a?t?" = agn 202, — a3t?™ ! — apayst?™.
Identity 99 For n >0, tY ;o s" *ai = an42 — s"Ha;.

Identity 100 For n > 0, agnq1 = a1t™ + 5 Y oy " Fak.

Identity 101 For n > 0, azn = aot™ + 5 Y p_; t* *agg_;.

Identity 102 For n > 1,

azn+1 = 8(ap + a2 + -+ +azn) + (t — 1)(ay + as + + - - + agn—1).

Identity 103 Forn > 1,
azn —1=3(a1 +a3+-+++a2n—1) + (t ~ 1)(ao + a2 + - - - + azn—2).

For the next two identities, we are given nonnegative integers cy, ¢z, ¢3, ag, a1 , a2 and for

n 2 3, the third-order recurrence @, = €161 + €2a,—-2 + c3a,—3. Find combinatorial
proofs of these. (For combinatorial convenience, you may assume that a; — ¢ya; > 0.)

Identity 104 Forn > 1,

n
(a2 — c1a1) + (c102 +¢3) ZCZ “lagi—1 = C20gn + C3G2n—1.

i=1
Identity 105 Forn > 1,

n-1

&3 (c2a1 + c3a0) + (c162 + €3) z 3 *ag; = c289n—1 + C3a9n-9.

i=1



3.7. EXERCISES 47

Other Exercises

1. Prove Combinatorial Theorem 6.

2. What recurrence and initial conditions generate colored bracelets, where for 1 <
i < k, there are c; color choices for a tile of length ?

3. Letu, =0forj <0, and for n > 1, up = Up—2 + uUp_3. Let w, = 0, for
i<Owp=w =wp =1, ws =wy =2, and for n > 5, Wy = Wp—1 + Wn—s.
Combinatorially prove, for n > 2, w, = up42.

4. Using the following second-order and third-order recurrences,
fn = fn-—l + f‘n—2: with fO =1, fl =1,

gn = Gn-1+ 9n-3, with g0 = lvgl =10=1,
hn ol hn-2 + hn—3, with hO b 1: hl — 0: h2 . 1’
th =tp-1 +tp—2 +tn-3, withip=1,¢; =1, =2,

prove for n > 0,

(b) tn+2 = gny2 + zp+q=n gptq»
(©) tasr = ka1 + 300 Pty

5. For the linear recurrence a, = ¢1@p—1 + -+ + Cran—k With nonnegative initial
conditions ag,a1,...,ar, prove that a, counts the number of restricted phased
colored tilings, where an initial tile of length ¢ is assigned one of a; phases, and
each subsequent tile of length ¢ is assigned one of ¢; colors. The restriction is that
the first tile must have length £ where 0 < £ < k — 1 and the second tile, if there
is one, must cover cell k.






CHAPTER 4

Continued Fractions

Definition Given integers ap > 0,a; > 1,a2 > 1,...,a, > 1, define [ag, 0, ... ,Gn) tO
be the fraction in lowest terms for

For example, [2,3,4] = £3.

4.1 Combinatorial Interpretation of Continued
Fractions

You might be surprised to learn that the finite continued fraction

3+ 1 1 and its reversal 292 + 1 T
7+—-—1 1.|._—1
15 + 1 15+——1'
1+2—92' 7+§

s e cimnli 103993 103993 ; .
have the same numerator. These fractions simplify to 33705 and =3z respectively. In this

chapter, we provide a combinatorial interpretation for the numerators and denominators of
continued fractions which makes this reversal phenomenon easy to see. Our interpretation
also allows us to visualize many important identities involving continued fractions.

First, we define some basic terminology. Given an infinite sequence of integers ap >
0,a; > 1,02 > 1,... let [ap, a1,...,an] denote the finite continued fraction

1
[ao,al,...,an] =ap + i . (41)
o +

az +

49
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You may wonder how we could possibly hope to combinatorially interpret a statement
like [2,3,4,2] = SI because the right side of the equation is not an integer. But since
the numerator and denominator are integer-valued, we have every right to expect that
the numbers 67 and 29 are somehow counting a problem that depends on 2, 3,4 and 2.
For a given collection of integers, let p and g be functions producing the numerator and
denominator of the resulting simplified continued fraction in lowest terms, i.e.,

. p(QOs a1,... )an)
Q(ao, Clyeeey an)

For example, p(2,3,4,2) = 67 and ¢(2, 3,4,2) = 29.
Naturally, since [a] = £, we have

p(a) = a and g(a) = 1. 4.2)

More complicated continued fractions can be computed recursively. By equation (4.1),
forn>1,

[00:01»""0“] =ap+ m

q(ah seey an)
?2(ay,...,0,)
- aop(ah s e e 1an) +q(a11 see ran)
p(ay,...,an)
Notice that the fraction on the right side must be in lowest terms since any num-

ber dividing the numerator and denominator must necessarily divide p(a;, ... yGn) and
g(e1,...,a,) which have no common factors. Thus,

p(ao,01,...,0,) = agp(ay,...,a,) + g(ay, ..., a.), 4.3)
g(ao,1,..-,0,) = play,... yQn)- 4.9

Now let’s do some combinatorics. For a sequence of numbers ag, a;, .. . , a,,, consider
the following tiling problem. Let P(ao, a1, . . -, a») count the ways to tile an (n+1)-board
with dominoes and stackable square tiles. Nothing can be stacked on top of a domino, but
for 0 < i < n, the ith cell may be covered by a stack of as many as a; square tiles. Figure
4.1 shows an untiled (n + 1)-board with the height conditions ag,ay, ... ,a, indicated.
Figure 4.2 gives an example of a valid tiling for a 12-board with height conditions 5, 10,
3,1,4,8,2,7,7,4,2,3.

a
r-l-q a5
Pm——q po—a
heights: qq +---4 boood
pmmmd Q4 v---1
tewegm=ey Q9 fommmpon=y Q.
A DX e ] b= 4 aG an—l'---'\
bmmmtomnpecnd Q3 boecmpmm—mpmm—y o om—y
BSS$FRC e - Semte s s oSS Tl - s S et
Board \ : : > > : : : : : :
cells: 0 1 2 3 4 5 6 n—-1n

Figure 4.1. An empty (n + 1)-board.
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Board
cells:

Figure 4.2. A tiling satisfying the height conditions 5, 10, 3, 1, 4, 8, 2, 7, 7, 4, 2, 3.

We define
Q(ao,a1,...,0s) = P(ay,...,a,). 4.5)

Thus Q(ag,a1,...,a,) also counts the number of ways to tile an n-board with height
conditions a,...,a,. (Note that the first cell has been removed.) Naturally, a 1-board
with height condition a can be tiled ¢ ways and an empty board can be tiled just one way.
Thus,

P(a) =a and Q(a) = 1. (4.6)

Counting tilings of boards with two or more cells can be computed recursively by
conditioning on how many squares cover the first cell or if a domino covers the first two
cells. That is, for n > 1,

P(ag,ay,...,an) = agP(ay,...,a,) + P(az,...,a,)
= aoP(ay,...,a,) +Q(a,...,a5). 4.7

By examining equations (4.2) through (4.7), we see that functions p and q satisfy the
same initial conditions and recurrence relations as P and Q. Thus, we have

p(ao,a1,...,an) = P(ap,a1,...,Gn)

and
g(ag, 0, ...,an) = Q(ag,a1,...,an).

Consequently, we have the following theorem.

Combinatorial Theorem 9 Let ag, a,, . . . be a sequence of positive integers, and for n >
0, suppose the continued fraction [ap, a1, . - . , ) is equal to %, in lowest terms. Then for
n > 0, p,, counts the ways to tile an (n+ 1)-board with height conditions ay, a;,...,0n
and g, counts the ways to tile an n-board with height conditions a,,...,ay.

For example, the beginning of the “z-board” (see Figure 4.3) given by [3,7,15] can
be tiled 333 ways by either using all squares (3 x 7 x 15 = 315 ways), a stack of
squares followed by a domino (three ways) or a domino followed by a stack of squares
(fifteen ways). Removing the initial cell, the [7, 15] board can be tiled 106 ways (105 ways
for all squarses;, and one way for a single domino.) This produces the 7 approximation
3,7,15] = 332, That is,
37,15 = 305 1 333

g L7106
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292

oo
p---
pm——
pm—=1

pmmm b=
bm-=1q pm--dq
p=——-1 te—=d
b= b—=—d
P bm——4
pm==d | adalial ]
prwwy pm——y
T t==<4 b===d

P s b
pmmmdm—= bmm—-d

3 =ty Rt B
R bt b=
fmm—dmmm o b
tm—mtmmmpmm=t ] b--=-g
L LT LT P

o 1 2 3 4
Figure 4.3. The beginning of the 7 board.

The curious reader might wonder what happens if we are allowed to stack dominoes in
addition to stacking squares. This leads to a more general situation which will be explored
in Section 4.3.

4.2 Identities

Armed with our tiling interpretation, many continued fraction identities practically re-
duce to “proofs without words”. Traditionally, continued fractions are not computed by
recurrences (4.3) and (4.4), but rather by the following relation.

Identity 106 Let ap > 0,a1 > 0,02 > 0,..., and for n > 0, let [ag,ay,...,0,] = 5‘:,"
in lowest terms. Then

a)po=ap, =1 pm=apa1+1, q1 =0y

b) For n 2 2, pp, = anpp-1 + Pn—2.

c) Forn 2 2, ¢, = anQn—-1 + gn—-2.

Part a) is easy to see both algebraically and combinatorially. Parts b) and c) however,
are much easier to see combinatorially. We present the proof of b) only, since the proof
of c) is virtually unchanged.

Question: For n > 2, in how many ways can the (n-+1)-board with height conditions
ap,a1,...,a, be tiled by dominoes and stackable squares?

Answer 1: By Combinatorial Theorem 9, there are p,, such tilings.

Answer 2: Condition on the last tile. There are a,, ways for the tiling to end with a
square, and the preceding board may be tiled p,_; ways. There is one way to end
with a domino, and the preceding board may be tiled p,,_» ways. Consequently, there
are anPn—1 + Pn—2 such tilings.

As an immediate corollary of Combinatorial Theorem 9 or the previous identity, we
have

Identity 107 [f a; = 1 for all i > Q. then [ag. a1, ... .an) = fri1/fn.
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The previous identity can be “extended”:

Identity 108 Forall n > 1, [2,1,1,...,1,1,2] = fo13/fns1, Where ap = 2, ap, = 2,
anda;=1forall0<i<n.

Denominator Set 1: The set of square-domino tilings of an n-board, where the last
tile can be a domino, a square, or a stack of two squares. By Combinatorial Theorem
9, this set has size p(1,1,...,1,1,2) = ¢(2,1,1,...,1,1,2).

Denominator Set 2: The set of square-domino tilings of an (n + 1)-board. This set
has size fp41.

Correspondence: Let T be an (n + 1)-tiling, If T ends with a square, then remove
it to create an n-tiling with no stacked squares. If T' ends with a domino, then “fold”
that domino to create an n-tiling that ends with a stack of two squares.

Numerator Set 1: The set of square-domino tilings of an (n + 1)-board, where the
first or last tile can be a domino, a square, or a stack of two squares. By Combinatorial
Theorem 9, this set has size p(2,1,1,...,1,1,2).

Numerator Set 2: The set of square-domino tilings of an (n + 3)-board. This set
has size has f, 3.

Correspondence: By applying the same “delete a square or fold a domino” procedure
to the first and last tile, an (n + 3)-tiling can be converted to an (n + 1)-tiling that
is allowed to have a stack of two squares at either end.

Other Fibonacci and Lucas identities are presented in the exercises, Identities 115-
121. Next we prove the reversal identity mentioned at the top of the chapter. It is typically
proved using an induction argument which we feel yields little insight. We hope you agree
that the combinatorial proof is more satisfying.

Identity 109 Suppose [ag,01,- - - ,Gn—1,8n] = Pn/@n. Then for n > 1, we have

Pn
Dn-1

[an, Qn—1y-++,01, 00] S

Question (numerator): In how many ways can an (n + 1)-board with height con-
ditions @n,@n-1,..-,01,a0 be tiled with dominoes and stackable squares?

Question (denominator): In how many ways can an n-board with height conditions
Gn—1,---,01,09 be tiled with dominoes and stackable squares?

Answer 1 (numerator and denominator): The answers are the numerator and
denominator respectively of [an,@n-1,-.-,01,00]-

Answer 2 (numerator): There is a one-to-one correspondence between tilings that
satisfy height conditions @, @51, - - - , @1, Gp and tilings that satisfy height conditions
0,01, - - -y Gn—1, Gy, by simply rotating the board 180 degrees. Hence the numerator
generates Py, tilings.

Answer 2 (denominator): By the same one-to-one correspondence, there are as
many tilings that satisfy the height conditions an-1,...,01,00 as there are tilings
that satisfy ag, @1,....0r—1, namely pn_;.
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We define the infinite continued fraction [ag, a1, @z, - . .] to be the limit of [ao,a1,. ..,
a,) as n — 0o. As we shall see later, this limit always exists and is some irrational number
a. The rational number 7, = [ag, @1, . - . ,8n] = Pn/n is called the nth convergent of c.

Let P,, and Q,, denote the set of all square-domino tilings with stackable square tiles
over cells 0,...,n and 1,...,7, respectively, with height conditions given by ag, ..., Gn.
Note that |P,| = p,, and |Qy| = ga.

The next few identities are useful for measuring the rate of convergence of convergents.
The first one shows how convergents get closer to one another.

Identity 110 The difference between consecutive convergents of [ag, 1, . . .| is:

Equivalently, after multiplying both sides by qngn-1, we have

PnGn—1 = Pn-1gn = (-1)*" L.

Set 1: The set P, x Q,,—1, which can be interpreted as the set of tilings of two boards,
where the top board has cells 0,1, ...,n with height conditions ag, a3, ...,a,, and
the bottom board has cells 1,...,n — 1 with height conditions a;,...,a,—1. This
set has size p,gn—1.

Set 2: The set Pp,—1 X Q,, the set of tilings of two boards, where the top board has
cells 0,1,...,n — 1 with height conditions ag,ay,...,a,—1, and the bottom board
has cells 1,...,n with height conditions a;,...,a,. This set has size p,—1qn.

Correspondence: We exhibit an almost one-to-one correspondence between Set 1
and Set 2. Consider (S, T’) € P, X Qn—1. As in previous chapters, for i > 1, we say
(S,T) has a fault at cell % if both S and T have tiles that end at 5. We say (S, T)
has a fault at cell 0 if S has a square at cell 0. For instance, in Figure 4.4, there are
faults at cells 0, 3, 5, and 6.

If (S,T) has a fault, construct (S’,7") by swapping the “tails” of S and T after
the rightmost fault. See Figure 4.5. Note that (S',7") € Pp—1 X Qy,. Since (S',T")
has the same rightmost fault as (S, T'), this procedure is completely reversible.

Notice when either S or T' contains a square, (S,T") must have a fault. Thus
the only fault-free pairs occur when S and T' consist of all dominoes in staggered

heights: G 61 G2 a3 0 G5 G Q7 G3 Gy Qi On

SePn I| '| | | =

4 » N » g

tail
0y1 2 344 531647 8 9 10 11

Teo i Ir_ll | 2

tail

Figure 4.4. A pair of tilings with faults and tails indicated.
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heights: Gy a a 063 Q4 a5 G Q7 G Gy Q19 033

S'Gpm I| I' | | | !
O 1 2 3 4 5 6 7 8 9 10 1

T'eQn | I| | ]
Figure 4.5, Result of swapping tails in Figure 4.4.

G @ a2 a3 a as @a a7 Qg ayg 0O an

w
0o 1 2 3 4 5 6 7 8 9 10 11

M—!

Figure 4.6. The fault-free pair consists of staggered dominoes.

formation as illustrated in Figure 4.6. When n is odd (i.e., S and T both cover
an even number of cells), there is precisely one fault-free element of P, X Qn—;
and no fault-free elements of Pp—; X Q,. Hence when n is odd, |P, X Qn—1| —
|Pp—1 X Qn| = 1. Similarly when = is even, there are no fault-free elements of
P, X Qn-1 and exactly one fault-free element of P,—; X Q. Hence when n is
even, |Pp, X Qn1| = |Pr-1 X Qn| =-1.

Treating the odd and even case together, we obtain

Prnln-1 — Pn-1qn = (_l)n—l.

Notice that the previous identity also implies that p,, /gy, is in lowest terms, since we
have an integer combination of p,, and g, producing 1. The next identity shows that
the even convergents are increasing, while the odd convergents are decreasing.

Identity 111 7, — rn—2 = (—=1)"an/qngn—2. Equivalently, after multiplying both sides
by gngn—2, we have
Prgn—2 — Pn—20n = (=1)"an.

Set 1: P, X Qn—2. This set has size ppgn—2.
Set 2: P2 X On. This set has size pp—2¢n.

Correspondence: We use tail swapping to create an almost one-to-one correspon-
dence between the sets P, X Qn—2 and Pp_2 X Q,.. The proof is essentially given in
Figures 4.7, 4.8, and 4.9. By tail swapping after the Jast fault, we have a one-to-one
correspondence between the elements of Pp, X Qn—2 and Pp_2 X O, that have faults

(Figures 4.7 and 4.8).
The only unmatched elements are those that are fault-free. When n is odd, there

are no fault-free elements of P, X Qn_o. but there are a,, fault-free elements of
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heights: a0 a1 a2 a3 as a@s ag ar ag ay G 411

SePu f )

>

| tail
012314567891011

#

tail

T e 9y

Figure 4.7. An element of P11 x Qg with rightmost fault indicated.

heights: a a1 a2 a3 a4 as a a7 ag Qg G aun

S' € Py || |l i | |

0 1 2 3 4 5 6 7 8 9 10 11

T eQn

*

Figure 4.8. The result of swapping tails in Figure 4.7.

Pr—2 X O, consisting of a stack of squares on the nth cell, and dominoes every-
where else (Figure 4.9).

Likewise when n is even, there are no fault-free elements of P,—2 x Q,, but
there are precisely a,, fault-free elements of P, x Q,_o, consisting of a stack of
squares on the nth cell, and dominoes everywhere else. Thus we have established
|Pr X Q2| = |Pr—2 X Qn| = (~1)"ay, as desired.

heights: G a1 G2 063 G4 G5 G a7y ag Gg Q10 O1n

————————————————————
0 1 2 3 4 5 6 7 8 9 10 11

%
Figure 4.9. Problem pairings are fault-free.

Using the combinatorially clear fact that g, — 0o as n — oo, the last two identi-

ties demonstrate that [ro, 71), [r2, 73], [r4,7s], .. is a sequence of nested intervals whose
lengths are going to zero. Hence, lim,,_,, 75, exists.

If we let r = limp_y00 T, We see by our nested intervals and Identity 110 that

1
O0<|r—rn| <lrn41—ral < <.
n " nI dn+19n q72;

Hence

Pn 1
O<|r—— < —.
l qnl q%
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It would be a crime to go this far and not prove that an infinite continued fraction
must be an irrational number. Let r = [ag, a1, az, . . .]. Multiplying the last inequality by
gn gives us

1
0 < |rgn —Pnl < —.

n

Now if » = £, then multiplying by b > 0 implies that for all n > 0,

b
0< I‘Wn"bpnl <—.
an

But the middle quantity is obviously an integer and the right quantity gets arbitrarily
small as n gets large. Since there are no integers between 0 and 1, we have reached a
contradiction and must conclude that r is irrational.

Continuants

Next we examine, for ¢ < j, the quantity K(i, ) which counts the number of tilings of
the sub-board with cells ¢,i+1,...,j with height conditions a;, a;41,-- ., a;. We see that
K(4,3) is the numerator of the finite continued fraction [a;, .. . ,a;] and the denominator
of the finite continued fraction [a;-1,...,a;]. Also, we define K(j +1,5) = 1. The
K(3,7) are identical to the classical continuants of Euler [40].

The following theorem, due to Euler, can also be proved by the now familiar tail
swapping technique.

Identity 112 Fori<m < j <mn,
K (i, j)K (m,n) — K(i,n)K(m,j) = (-1)""™K(i,m — 2)K(j + 2,n).

This result follows by considering tilings of sub-boards S from cells i to 7 and T from
m to n. Every faulty pair (S, T) corresponds to another faulty pair (S”,T”) obtained by
swapping the tails after the last fault. The term on the right side of Identity 112 counts the
number of fault-free tilings that only occur when the overlapping regions (of S and T', or
of S’ and 7", depending on the parity of j —m) consist entirely of dominoes in staggered
formation. See Figures 4.10 and 4.11. Setting ¢ = 0 and m = 1, Identity 112 generalizes
Identities 110 and 111 by allowing us to compare arbitrary convergents r; and 7+,

heights: a; ser Am-1Qm *°° ;i Cj41 .- (s
C I - I !

K - I » ey

"K(i,m-2) fault-free region ~ K(j+2,n)

Figure 4.10, When j — m is even, there are K (i,m — 2)K(j + 2, n) fault-free tilings (S, T).
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heights: a; cer Om-1Gm .- Gj Gj41 - Gn
— | - I I I e
| - | ! ,
"K(i,m—-2) fault-free region - K(i+2,n)

Figure 4.11. When j — m is odd, there are K (i, m — 2) K(j + 2, n) fault-free tilings (S',T").

4.3 Nonsimple Continued Fractions

Finally, we examine continued fractions of the form
b
ap + L A (4.8)
2
a + b
az +
o

bn
a, + .

where for Z > 0, a; and b; are positive integers, and ag is a nonnegative integer. We shall
denote the nonsimple finite continued fractions by
[GO: (bh a1)7 (b2: a2)’ sevy (bni an)] =ap+ bl b . (49)
o1+ 2 5
3
bn

oy ln
an

a2 +

As before, we shall let p and g be functions that produce the numerator and denom-
inator of a finite continued fraction. When evaluating a simple finite continued fraction
from the “bottom up”, the result is always a fraction in lowest terms, but this is not
necessarily the case for nonsimple ones. For example (3, (2,4)] = 4. We shall write our
numerator and denominator without reducing to lowest terms. Hence p|3, (2,4)] = 14 and
q(3, (2,4)] = 4. Functions p and g still satisfy the initial conditions p[a] = a, gfa] = 1,
and forn > 1,

[00’ (bla al): ooy (bns an)]
+ 2
0 [ali (b2: 0'2)’ seey (bn) an)]
_ le[al 3 (b2’ 02), seey (bﬂ-’ a‘n)]
=0 pla, (02,02), - (bur 0]
- aoP[ah (bz, a2)r seey (bm an)] + blq[a'l, (b2» GZ)) ceey (bm an)]
p[al) (b27 0,2), ceey (bm an)] )

=aq

Thus,

p[a()) (bh G]_), seey (b‘n.’ an)] b a'op[a'la (b2) 02), ey (bm an)]
+bIQIah (b21 0.2), seey (bn) a'n)]a
q[a'Os (bla 0:1), ) (b'rh a‘n)] = p[ab (b'.!‘ (lg). e (bn, an)].
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Now we explore a related tiling problem. Suppose we allow dominoes to be stacked as
well as squares. Specifically, suppose for ¢ > 1, we impose height conditions by, b, ... s0
that we may stack as many as b; dominoes on cells i—1 and i. We let P[(ao, (b1,01), ..,
(bny@n)] count the number of ways to tile an (n + 1)-board with cells 0,1,...,n and
height conditions ay, ...,a, and b, ..., b, for the squares and dominoes respectively. We
let @, count the same problem with cell 0 removed (along with height conditions ag and
b1). Thus, Pla] =a, Q[a) =1, and for n > 1,

Q[(GOy (bh al); eney (bn) an)] e P[O.],, (b2) 0'2)) erey (b‘n) an)]'

By conditioning on the first tile, we see that P satisfies

Plag, (b1,01), - ., (bn, @n)] = agP[as, (b2,02), - - - , (bny an)]
+b1Q[0.1, (b21 0.2), seey (bn: an)]

Consequently, we have the following theorem.

Combinatorial Theorem 10 Let a,a,, ... be a sequence of positive integers. For n >
1, suppose the continued fraction [ag, (b1, 01), - . - , (bn, an)] computed by recurrence (4.9)
is equal to %. Then for n > 0, p, counts the ways to tile an (n + 1)-board with height
conditions ag, (b1,a1), - - -, (bn, ar) and gn counts of ways to tile an n-board with height
conditions ay, (bz,a2) ..., (bn,an).

Some consequences of this theorem are explored in the exercises.

44 Get Real Again!

Can we make sense out of [ag,@1,...,as] When some of the a;s are real or complex
numbers? Essentially, yes! Just as we did at the end of the last chapter, instead of giving a
square at cell ¢ a; choices, we give that square a weight of a;, dominoes are given a weight
of 1, and the weight of the tiling is the product of the weights of its tiles. Then we can
define P(ap,a;,--.,as) and Q(ao,ay,...,a,) as the sum of the weights of all square-
domino tilings over cells 0,1,...,n and cells 1...,n, respectively. The continued fraction
for [ag, a1, . - - , ax) will simplify to P(ao, @1,..-,0:)/@(ao, a1, - .,a,) provided that no
division by zero takes place along the way. Nonsimple continued fractions can be handled
in this way too when evaluating [ao, (a1,b1), .- -, (s, bn)] by assigning a weight of b; to
dominoes that cover cells ¢ — 1 and <.

4.5 Notes

We thank Christopher Hanusa who, as an undergraduate, mentioned that some of the
Gibonacci identities reminded him of continued fraction identities. Some of the material
in this chapter originally appeared in [12], and we are grateful to Jim Propp for suggesting
to us a derivation of Combinatorial Theorem 9 that does not rely on Identity 106. Ira Gessel
suggested many of the exercises that follow. For more information on continued fractions
(although not from a combinatorial perspective) see [31] or [39].
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4.6 Exercises

1. Directly count the tilings of the board with height conditions 3, 7, 15, 1 to show that

—3
[3,7,15,1) = 255,

2. Find (nonsimple) continued fractions that produce numerators for Lucas numbers
and Gibonacci Numbers.

Prove each of the identities below by a direct combinatorial argument,.
Identity 113 For n >0, [ag, a1,...,an,2] = [ag,@1,...,an, 1,1}
Identity 114 For n > 0, if m > 2 then
[ag,01,...,an,m] = [ag,a1,...,6,,m—1,1].
Identity 115 For n > 0, [3,1,1,...,1) = Lpy2/ fn, where ag = 3, and a; = 1 for all
0<iln

Identity 116 For n > 1, [1,1,...,1,3) = L,42/Lny1, where a, = 3, and a; = 1 for
al0<i<n.

Identity 117 For n > 1, [4,4,...,4,3] = fan43/ fan, where a, = 3, and a; = 4 for all
0<i<n

Identity 118 Forn > 1, [4,4,...,4,5] = fan+4/fan+1, where a, =5, and a; = 4 for
ald<i<n

Identity 119 Let a; =4 for 0 <i < n. Then [4,4,...,4] = fanis/ fant2-

Identity 120 For n > 1, [2,4,...,4,3] = Lsn41/fan, where ap = 2, an, = 3, and
o;=4forall0<i<n.

Identity 121 For n > 1, [2,4,...,4,5] = Lany2/fans1, where ag = 2, a, = 5, and
e;=4forall0<i<n.

Identity 122 For nonsimple continued fractions,

P, = Cn Py + ann-2)
@Qn = ,Qn-1 + bp,Qn—2
Jor n 2 2, with initial conditions Fy = ag, P, = aja9+b;, Qo =1, Q; = a,.

Identity 123 For nonnegative integers s,t, let ug = 1, u; = s, and Jor n > 2, define
Up = SUn—1 + tuy—2. Then the nonsimple continued fraction

[ag, (b1, 1), (b2, @2), ..., (Br, an)] = [s, (¢, 5), (¢, 5), ..., (£, 9)) = vnq1 fttn.

Identity 124 For nonnegative integers s, t, let vo = 2, v, = s, and Jor n > 2, define
Un = 8Un—1 +tUn—2. Then the nonsimple continued fraction

[a01 (bl) al)a (b21 0.2), ceny (bﬂ—ll an—l)p (bn) an)]
. [8, (t» 3)) (t: s)a ey (t: 3): (Zt, 3)] = 'vn+1/'vn.
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Uncounted Identities

The identities listed below are in need of combinatorial proof.

1. Combinatorially prove:

—F(;'l")_m =Lp— (—]2:’;)"‘ y (4.10)
n e

Lm

where the number L,, appears ¢ times. Note that this is a generalization of our
formulas for [1,1,...,1] and [4,4,...,4].

2. Euler proved

e=1+ 1 1 . 4.11)

1+
2
2+ 3
3+ ———

44 —
+5+_

What are the combinatorial implications for e?






CHAPTER 5

Binomial Identities

Definition The binomial coefficient () is the number of k-element subsets of {1,...,n}.

Definition The multichoose coefficient ((")) is the number of k-element multisubsets of
{1,...,n}.
D=4 (2) =6 (j) =4.and () =1.
1,

=4, (3) =
() =4 (@) =10 () =2,

Examples of binomial coefficients are (5) = 1

4)’

Examples of multichoose coefficients are ((3)
ac () = %

3.1 Combinatorial Interpretations of Binomial
Coefficients

Binomial coefficients were born to count! Unlike most of the quantities we have dis-
cussed in this book, binomial coefficients are almost always defined as the answer to a
counting problem. Specifically, we define (7) to be the number of k-element subsets of
{1,2,...,n}. Put another way, (}) counts the ways to select a committee of & students
from a class of n students where the order of the selection is not important. By definition
we have, for n > 0, (J) = 1, and for k < 0, (}) = 0. (Although it’s possible to define
(%) for negative values of », we will not do so here.)
Binomial coefficients have a simple algebraic formula

()= e

which can be easily seen by the following identity:
Identity 125 For0 < k<n, nl= (;:)k!(n - k)!

Question: How many ways can the numbers 1 through n be arranged in a list?

Answer 1: There are n! arrangements since the first number can be chosen n ways,
the next number can be chosen n — 1 ways, and so on. (We shall have more to say
about n! in Chapter 7.)

Answer 2: Condition on which numbers are among the first k in our arrangement.
There are, by definition, (}) ways to choose which of the 7 numbers appear among

63
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the first k. Once these are chosen, there are k! ways to arrange them, followed by
(n — k)! ways to arrange the remaining elements. Hence the numbers 1 through n
can be arranged in (})k!(n — k)! ways.

We shall take pains to avoid invoking equation (5.1), in the same way that we avoided
using Binet’s formula (Identity 240) when proving identities for Fibonacci numbers in
Chapter 1. Our goal is to understand binomial identities entirely from their combinatorial
definition and to avoid algebraic arguments (such as proofs by induction) as much as
possible.

3.2 Elementary Identities

In this section, we present simple combinatorial proofs of binomial coefficient identities.
Although the arguments we present in this section are quite well-known, they are beautiful
nonetheless. In subsequent sections of this chapter, the arguments will become trickier.

n\ _ ( n

k)] \n-k)
Question: How many ways can we create a size k committee of students from a
class of n students?
Answer 1: By definition, ().

Answer 2: We may choose n — k students to exclude from the committee, which
can be done (,”,) ways.

Identity 126 For 0 < k< n,

Identity 127 For 0 < k < n, (except n =k = 0),

n\_ (n-1 + -1

k)] \ k k-1)
Question: How many ways can we create a size k committee of students from a
class of n students?

Answer 1z As before, (7).

Answer 2: Condition on whether or not student n is on the committee. There are

(";;1) committees that exclude student n, and (’,::}) committees that include student
n.

Identity 127 (along with initial conditions (g) = 1 and (%) = 0 for n < k) can be
used to generate binomial coefficients in a convenient table known as Pascal’s Triangle.
See Figure 5.1.

Although the previous identities are easy to prove by using the algebraic formula for
(%) given in Identity 125, the next identity is not at all obvious from the factorial definition
of (7). Note that the sum on the left is finite, since (}) =0 for k> n.

Identity 128 For n > 0,

%)=

k>0
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n\k|0 1 2 3 4 5 6 7 8 9 10
0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 510 10 5 1

6 1 6 15 20 15 6 1

7 1 721 3 3 21 7 1

8 1 8 28 656 70 56 28 8 1

9 1 9 36 8 126 126 8 36 9 1
10 1 10 45 120 210 252 210 120 45 10 1

Figure 5.1. Numbering our rows and columns with nonnegative integers, the number in row n
and column & is (}), and all missing entries are zero.

Question: How many ways can we create a committee (of any size) from a class of
n students?

Answer 1: Since for 0 < & < n, there are (}) committees of size k, there are
> k>0 (%) such committees.

Answer 2: Decide, student by student, whether or not to put that student on the
committee. Since there are two possibilities for each student (on or off), there are 2"
possible committees.

Identity 129 For n > 1,
n) -1
> () ="
> (a
Question: How many ways can we create a committee with an even number of
members from a class of n students?

Answer 1: Since for 0 < 2k < n, there are (J;) committees of size 2k, there are
> k>0 (31) such committees.

Answer 2: The first n — 1 students can be freely chosen to be on or off of the
committee, as in the previous proof. Once these choices are made, then the fate of
the nth student is completely determined so that the final committee size is an even
number. Consequently, there are 2"~ such committees.

Notice that the last two identities imply that exactly half of all subsets of {1,...,n}
are even. Consequently, half of them must also be odd. Equivalently, this says

i (’,;‘) (-1)* =0.

k=0
We shall have more to say about such alternating sums in the next chapter.

Identity 130 For 0< k<mn,
n n—1
k(k) ""’(k—l)'
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Question: How many ways can we create a size k committee of students from a
class of n students, where one of the committee members is designated as chair?

Answer 1: There are (’,:) ways to choose the committee, then k& ways to select the
chair. Hence there are k(};) possible outcomes.

Answer 2: First select the chair from the class of n students. Then from the remaining
n—1 students, pick the remaining k—1 committee members. This can be done n(:j
ways.

The next identity can be treated as a continuation of Identity 130.

Identity 131 Forn > 1,

i k (Z) =n2"" 1,

k=0
Question: How many ways can we create a committee (of any size) from a class of
n students, where one of the committee members is designated as chair?

Answer 1: For a committee of size k, where 0 < k < n, there are k(}) such
committees. Altogether, we have Y i k() possible outcomes.

Answer 2: First select the chair from the class of n students. Then from the remaining
n — 1 students, there are 2"~! ways to choose a subset of them to form the rest of
the committee.

Dividing both sides of the last identity by 2™ allows us to give a different combinatorial
proof of the equivalent identity:

22:0 k(;:) 1_7:

2n 2°
Question: What is the average size of a subset of {1,2,...,n}?

Answer 1: We add up the sizes of all subsets and divide by the total number of
subsets. Since for 0 < k < n, there are (z) subsets of size k, and there are 2"

D > ¥ (4
subsets altogether, the average subset size is 2“;2".,‘52

Answer 2: Pair up each subset with its complement. Since each such pair has n
elements, each complementary pair has an average of £ elements. Hence the average
subset size is 5.

The next identity, Vandermonde’s Identity, has a simple combinatorial interpretation.

Identity 132 For m >0, n > 0,

(m:n) =§(1:) (kﬁj)'

Question: From a class of m +n students, consisting of m men and » women, how
many ways can one form a size k committee?

Answer 1: By definition, ("™™).
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Answer 2: Condition on the number of men on the committee. For 0 < j <k, we
can form a committee with j men by first choosing the men ((7) ways), then the

remaining k — j committee members can be chosen from the women in ( Phid J') ways.
k m bl .
Altogether, there are 35, ('7) (i ;) such committees.

Many of the previous identities can be proved using algebraic methods based on the
Binomial Theorem, but even that can be proved combinatorially.

Identity 133 For n > 0,

(@+y)" = i (Z) zkyn k.

k=0

Question: In a class of n students, each student is given the choice of solving either
one of z different algebra problems or one of y different geometry problems. How
many different outcomes are possible?

Answer 1: Since each student has x + y choices for which problem to solve, there
are (x + y)™ possible outcomes.

Answer 2: Condition on the number of students who choose to solve an algebra
problem. For 0 < k < n, there are (2) ways to determine which k students chose
to do an algebra problem, then z¥ ways for them to decide which algebra problems
to do, then y™~* ways for the remaining n — k students to decide which geometry
problems to do. Altogether, there are 3 ¢_, (7)z*y™* possible outcomes.

The proof above assumes that = and y are integers, although the theorem is true for
real or complex values of = and y as well. There are several combinatorial ways around
this issue. One way is to observe for any fixed y, both sides of the identity are degree n
polynomials in z that agree on an infinite number of points. Hence they must be equal.

Another (slightly more algebraic) way to view this identity is to think of the expression

(+y)"=(+y)(z+y) - (x+y) (ntimes),

and ask, “How many ways can one create an z¥y™* term?” Each such term arises by
choosing an x term from k of the z + y factors, which can be done (};) ways.
The next identity has an interesting application to number theory.

Identity 134 For0<m <k <n,

n\(k\ _(n\({n—-m

k)J\m) \m/\k-m)’
Question: In a class of n students, how many ways can we choose a size k committee
that contains a size m subcommittee?

Answer 1: The committee can be chosen (}) ways, then the subcommittee can be
chosen () ways.

Answer 2: First choose the m students who will be on the committee and the
subcommittee. This can be done () ways. From the remaining n — m students,
the k — m students to be on the committee but not the subcommittee can be chosen

(R=™) ways.
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As a simple consequence of this last identity, Erdts and Szekeres proved the following
simple fact about binomial coefficients. (It seems that this was not known prior to 1978!)

Corollary 7 For 0 <m < k <n, () and (}) have a nontrivial common factor. That
is, ged((2), (1)) > 1.

Proof. Suppose, to the contrary, that (") and () are relatively prime. By Identity 134,
(™) divides (7)(%). But since () and (}) have no common factors, it follows that ()
divides (*). This is impossible, since it is (combinatorially) clear that (},) is greater than

(m)- 0

5.3 More Binomial Coefficient Identities

For the identities in this section, it is more convenient to talk about subsets than com-
mittees. While Identity 128 proved that Yy, (%) = 2", no general closed form exists

for the partial sum Y 7, (%) where m < n. However, if we interchange the roles of the
fixed and the indexed variable in the binomial summation, a closed form for the partial
sum does exist. Specifically:

Identity 135 For 0< k <n,
i m)__ n+1)
= \k k+1)

Question: How many (k - 1)-subsets are contained in the set {1,2,..., n+1}?

Answer 1: By definition, (7).

Answer 2: Condition on the largest number in the subset. A size k + 1 subset with
maximum element 7 + 1 can be created (') ways. Since m + 1 can be as small as

k+1 and as large as n + 1, there are (£) + (“}) +--- 4 () subsets in total.

Identity 136 For 0 <k <n/2,

S @)=

m=k

Question: How many (2k + 1)-subsets are contained in the set {1,..., n + 1} ?

Answer 1: By definition, (;).

Answer 2: Condition on the median number in the subset. In a size 2k + 1 subset,
the median element will be the (k 4 1)st smallest element, with % elements below it
and k elements above it. (For example, in the set {2, 3, 5,8, 13}, the median element
is 5.) Hence, the number of size 2k + 1 subsets with median element m + 1 is
(%) ("%™)- Since m +1 can range from k + 1 to n + 1 — k, the identity follows.

By conditioning on the rth element of the set, we obtain the following generalization.
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Identity 137 For 1 <r <k,

Mi_k i=1\(n-3\ _(n
: r=1J\k-7) \k)’
j=r
As we have seen before, binomial coefficients and Fibonacci numbers can’t help
running into each other. The next few identities are variations on the same theme.

Identity 138 Fort > 1,n > 0,

S XX ()0 () = e

21202220 2,20

Question: In how many ways can you create subsets Sy,S5s,...,S;, where S; C
{1,2,.. .,n} and for2<i<¢, S; C {1,2, ,n} and S; is disjoint from S;—;?

Answer 1: Condition on the size of each subset S;. To create subsets that are
“‘consecutively disjoint” with sizes 2; = |S;], 1 £ 7 < n, there are (:1 ) ways to
create Sy. Then, since S is disjoint from S, there are (“;;“) ways to create Ss.
Since S; is disjoint from S, there are ("772) ways to create S3 and so on. Thus

z3

there are (*) ("77) ("2%2) -« (*T2t") ways to create Sj,..., S; with respective

sizes zy,...,%;. Altogether Sy, S3,...,S; can be created in

DA e e

71202220 220
ways.

Answer 2: For each element j € {1,...,n}, decide which subsets contain j. By
construction, the subsets containing j must be nonconsecutive. Exercise 1 in Chapter
1 shows that there are fi43 ways to select the nonconsecutive subsets containing
§, among the sets S,...,S;. Hence the elements 1 through n can be placed into
subsets in fi%, ways.

For those that prefer the tiling approach from Chapter 1, here is a different proof of
Identity 138,

Question: In how many ways can you create n square-domino tilings 1,...,T,,
each of length £ 4 1?

Answer 1: Each tiling can be created f;;1 ways, so there are f73, such tilings.

Answer 2: For each cell j, 1 < j <t, let z; denote the number of tilings that have
a domino beginning at cell j. Conditioning on all possible values of zy,...,z:, we
have (:1 ) ways to decide which of Ty, ..., T, begin with a domino. (The rest begin
with a square.) Among the n — x; tilings that do not begin with a domino, there are
("22r) ways to choose which tilings have a domino beginning at cell 2. (Among
these n — x; tilings, the unchosen ones have a square at cell 2.) Among the n — x2
tilings that do not have a domino covering cells 2 and 3, there are (";:") ways to
choose which tilings have a domino beginning at cell 3. Continuing in this fashion,
Ti,..., T, can be tiled in () (*721)(7;72) -+ (") ways, as desired.

X2 I3 Iy
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Generalizing the previous argument, we obtain
Identity 139 Fort > 1,n>0,c2>0,

=5 (2 () () ()

1 202220 2420

Question: In how many ways can you create n square-domino tilings 13, ..., Ty, of
length ¢ + 1, where T}, ..., T, must begin with a square?

Answer 1: There are f7f;';° such tilings, since the first c t-nlmgs can be created
f+ ways, and the remaining n — ¢ (¢ + 1)-tilings can be created f;;° ways.

Answer 2: The exact same reasoning as in the last proof applies here. The only
difference is that the z; tilings that begin with dominoes must be chosen from
Tet1,- - - T Hence the first step can be performed (*€) ways instead of (7).

Identity 138 can be generalized in a different direction to produce a Lucas identity.

Identity 140 Fort > 1,n >0,

g;oz;o z‘go ( )(n 3:1) (n ;3:1:2) (n —a:t- )2:.:, n .

The proof is the same as in Identity 138, but now each of the z; tilings that begin
with a domino is given one of two phases. Even more generally, we have

Identity 141 Fort > 1,n >0,
n— :cl) (n— azg) . (n - wg_l) cEgn- — gn
0 . )

where Gj is the jth element of the Gibonacci sequence beginning with Gy and G;.

We remark that Identity 138 and its generalizations arose from our attempts to com-
binatorially prove the following generalization of Identity 5 from Chapter 1.

Identity 142 Fort > 1,n >0,

2 [ P B e R
21502250 2,50 L2 T3 Ty ft—
For a combinatorial proof of that, see [14].

5.4 Multichoosing

In this section, we examine identities involving the quantity (7)), spoken “n multichoose
k”, which counts the ways to select k objects from a set of n elements, where order is
not important, but repetition is allowed. The 20 possible multisubsets of size 3 that can
be created from {1,2, 3,4} are illustrated in Figure 5.2. By contrast () counts the same
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((g)) == (5) =

{1,1,1} {1,2,3} {2,2,2} {2,4,4}| {1,2,3}
{1,1,2} {1,2,4} {2,2,3} {3,3,3}| {1,2,4}
{1,1,3} {1,3,3} {2,2,4} {8,3,4}| {1,3,4}
{1,1,4} {1,3,4} {2,3,3} {3,4,4}( {2,3,4}
{1,2,2} {1,4,4} {2,3,4} {4,4,4}

Figure 5.2. 3-multisubsets and 3-subsets of {1,2, 3,4}.

situation where repetition is not allowed. The four possible 3-subsets of {1,2,3,4} are
given in Figure 5.2. Alternately, (%)) counts the nonnegative integer solutions to

1+ 2o+ -+ =k

For 1 < i <, z; counts the number of times the ¢th object is chosen.
Here are some of the ways that we like to interpret ((%)).

Elections: ((})) counts the ways that k votes can be allocated to n candidates. Here
x; counts the number of votes received by candidate <.

Buckets of ice cream: ((’,’cL ) counts the ways to choose k scoops of ice cream from
n possible flavors, where repetition of flavors is allowed, and the order of the scoops
in the bucket is not important. Here x; denotes how many times flavor ¢ is chosen.

Nondecreasing sequences: ((7)) counts the positive integer sequences ay, @z, . - - , Gx
where 1 € a3 € a3 £ ++- < a; < n. Here z; denotes the number of ¢’s in the
sequence.

Nerds and kandies: ((})) counts ways that we can allocate k identical pieces of
kandy to n hungry nerds. Nerds may receive any number of kandies, including
possibly zero. Here z; denotes the number of kandies given to nerd i. (We apologize
for the intentional misspelling, but it does help you remember which is n and which
is k1)

Conveniently, ((F)) can be expressed in terms of binomial coefficients. We present
three different proofs of the fundamental identity:

Identity 143 For k,n>0and k >0,

(6)-C+17)

Question: How many ways can we allocate k identical kandies to n nerds?

Answer 1: By definition, ((7))-

Answer 2: We represent each allocation with “stars and bars”. Specifically, each
allocation can be thought of as an arrangement of k stars (each representing a kandy)
and n—1 bars which act as dividers between nerds. For example, when allocating ten
kandies to four nerds, the arrangement of ten stars and three bars given in Figure 5.3
represents the situation where the nerds 1, 2, 3 and 4 receive 3,2,0 and 5 kandies,
respectively. Each such arrangement involves placing n+k — 1 objects in a row and
deciding which % of them will be kandies. (In our example, the kandies were placed
in spots 1,2,3,5,6,9,10.11.12,13)
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123456738 910111213

Figure 5.3. Multichoosing can be represented using stars and bars.

The same identity can be proved by a one-to-one correspondence.

Set 1: Let S denote the set of integer sequences ay,@2,...,ax Where 1 < a3 <
az < -+ < ay, < n. By our earlier interpretation, |S] = ((})).

Set 2: Let T denote the set of integer sequences by, b, ...,bx where 1 < b < by <
..+ < by < n+ k — 1. Each element of T' can be thought of as a k-element subset
of {1,...,n4+k—1}, |T| = (**77).

Correspondence: For sequence (a1,az,...,ax) in S, let b; = a; +72—1, for i =
1...,k. It is easy to see that the resulting sequence (by,bz,...,bx) is in T. For
example, when n = 10 and k = 6, the nondecreasing sequence 1,1,2,3,5,8 is
mapped to the increasing sequence 1,2, 4, 6,9, 13. Since this procedure is reversible
(a; = b; — i + 1), it follows that |\S| = |T].

Yet another way to derive Identity 143 is to first prove the following.
Identity 144 For0<n<m,

((n2))=(222)

Question: How many ways can we allocate m votes to n candidates, where every
candidate gets at least one vote?

Answer 1: First we give each candidate a single vote (since the votes are identical,
there is only one way to do this) then we allocate the remaining m —n votes however
we want. Hence there are ((,.",)) ways to cast votes for the candidates. Note that
this quantity is nonzero only when n < m.

Answer 2: Here we do stars and bars a little differently. We begin with m stars each

representing a vote, but since no candidate may leave empty-handed, we can not put

two bars in a row, nor can we have any bars at the beginning or end. In other words,

we have exactly m1 — 1 places where we can place our n — 1 dividers. This can be
A

accomplished (n—l) ways. In the example in Figure 5.4, candidates 1,2, 3 and 4 get
5,2,1 and 2 votes respectively.

12345678 910111213

Figure 5.4. Another star bar representation.

By letting m = n + k, the last identity simplifies to Identity 143.
Identity 145 Forn> 1, k > 0,

(()=(G22):
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Set 1: Let S denote the set of ways to arrange k stars and n — 1 bars. By our earlier
interpretation, |S| = ((})).

Set 2: Let T denote the set of ways to arrange k bars and n — 1 stars. By the same
interpretation, [T = ((*1)).

Correspondence: By turning stars into bars and bars into stars, we have a one-to-one

correspondence between S and T. Hence ((7)) = ((5+1)).

Not surprisingly, there are many multichoose identities that resemble earlier binomial
identities. We begin with the Pascal-like identity:

Identity 146 For n >0, k > 0 (except n =k =0),

()= (C20)+((%)

Question: In how many ways can we choose k scoops of ice cream from n different
flavors?

Answer 1: By definition, ((7)).

Answer 2: Condition on whether or not the nth flavor is selected. If so, place one

scoop of the nth flavor in the bucket (in one way) and select the remaining k& — 1

scoops in ((,,)) ways. Otherwise, the k scoops of ice cream may be selected from

the n — 1 other flavors in (")) ways.

We encourage the reader to provide similar combinatorial proofs using the other com-
binatorial interpretations of ((7)). The next identity may seem wrong at first glance:

H(() = (GE):

Question: How many ways can we create a nondecreasing sequence 1 < a3 < az <
..+ < a; < n and underline one of the elements?

Answer 1: By definition, there are ((})) ways to create the sequence, then k ways
to choose the underlined term. Hence there are k ((%)) such sequences.

Identity 147

Answer 2: First determine the value that will be underlined. There are n choices for
this. Suppose that the underlined value is 7. Next create a nondecreasing sequence
of k — 1 elements between 1 and n + 1. There are ((F*1)) such sequences. Any
rs that are chosen here will go to the left of the underlined 7. Any n + 1s that are
chosen will be converted to rs and repositioned to the right of the underlined r.
Hence there are n((F1)) such sequences altogether. For example, if n =5, k=9,
and our underlined value is 7 = 2, then the 8-sequence 1,1, 2, 3,3,5,6,6 generates

the 9-sequence 1,1,2,2,2,2,3,3,5.

m=i

Identity 148 For k > 1,
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Question: How many ways can we create a nondecreasing sequence 1 < a3 < a2 <
ese S ax S n?
Answer 1: As usual, ((})).

Answer 2: Condition on ax, the largest element of the sequence. For 1 < m < n, the
number of such k-sequences where a; = m equals the number of (k — 1)-sequences
1<a <ag <-- < ap—y < m. Since there are, by definition, ((,™,)) such

sequences, then there are Y .., ((,™,)) such sequences altogether.

Although there is no closed form for "y (7). We do have

2 (()-(C2)):

Question: In how many ways can m votes be allocated to » + 1 candidates?
Answer 1: As usual, (("t1)).

Answer 2: Condition on the number of votes given to candidates 1 through n. If the
first n candidates receive a total of k votes for 0 < k < m, then there are ((}))
ways to allocate these votes, and candidate n + 1 receives the remaining m — k votes.
Altogether there are Y ;- (7)) allocations.

Identity 149 For n 2 0,

Our final identity in this section states that

()2 () 0)

or equivalently,

Identity 150 For n > 0,

(@)= ()

Question: In how many ways can k identical kandies be allocated to n nerds?
Answer 1: As usual, ((})).

Answer 2: Condition on how many nerds receive any kandies at all. For 0 < m < n,
if there are to be exactly m nerds who receive kandies, then there are (*) ways to

select them, then one way to give each a kandy, then ((,™ )) ways to allocate the
remaining k — m kandies to them.

If you are still “hungry” for more multichoose identities, then feast on some of our
exercises!
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3.5 Odd Numbers in Pascal’s Triangle

We conclude this chapter with a pretty combinatorial proof concerning binomial coeffi-
cients. If we examine Pascal’s Triangle, it appears that the number of odd integers in each
row is always a power of 2. More precisely we prove the following amazing theorem.

Theorem 8 For n > 0, the number of odd integers in the nth row of Pascal’s triangle
is equal to 2° where b is the number of 1s in the binary expansion of .

For example, since 76 = 64 + 8 + 4 = (1001100)p,qe o> then row 76 of Pascal’s

u';g;lgle has 22 = 8 odd numbers. In other words, there are eight values of k for which
is odd.

(k A more general result, due to Lucas, is presented in the last chapter of this book. To
prove this theorem we shall devise a method to determine the parity of (’,:) for0<k<n
and then count the ones that are odd.

The proof of Theorem 8 makes frequent use of a simple numerical fact easily proved
by the examining the equation a = br.

Lemma 9 Let r,0,b be integers where r = %. If a is even and b is odd, then v is even.
If a is odd and b is odd, then 7 is odd.

The next lemma provides a fast method for determining the parity of (’,:)

Lemma 10 If n is even and k is odd, then (}) is even. Otherwise,
n |_n/2])
= 2).
() = (fa)) ot
n/2

Consequently, except when 7 is even and k is odd, (7) has the same parity as (}; /2)
where we round n/2 and k/2 down to the nearest integer, if necessary. For example, we

have (g;) _ G:) = (1:) (mod 2)

and (194) is even since 14 is even and 9 is odd. Thus (g;) is even. On the other hand,

€)@= ()=()=()=() =t e

Hence, (37) is odd.

Proof of Lemma 10. '
Case 1: n is even and k is odd. From Identity 130, the integer

n—-1
ny _ n(3m1
k k
has an even numerator and an odd denominator. Hence by Lerr}ma 9,. (’,:) must be even.
Case 2: n is even and k is even. We perform the non-combinatorial act of expressing

(%) in terms of its formula, then separate the odd numbers from the even numbers. For a
more combinatorial derivation, see Identity 224. Consequently,
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(n)=n(n-1)(n—2)---(n—k+1)

k 1-2-3--+k
_(n-1)(n-3)---(n—k+1) n(n-2)(n—4)---(n—k+2)

B 1-3-5---(k—1) 2-4-6---k
_-l)-3)--(n-k+1) 28-33-1(F-2)(3-F+1)
1-3-5---(k-1) 2%.1.2.3...§

_(e=)(=3)--(n—k+1)-(3}3)
- 1-3-5-.-(k—1)
Now the resulting denominator is certainly odd, as are all but the last term of the

numerator. Hence by Lemma 9, the parity of (}) will be the same as the parity of (’,:ﬁ .

n\ _ (n/2\ _ |n/2]
() = (a) = () mos
as desired.
Case 3: n is odd and k is odd. We again use Identity 130 and Lemma 9 to get

(Z) i n(’ij) B (Z: i) (mod 2).

But since n — 1 and k — 1 are both even, Case 2 implies (}_}) = (8::3;;) (mod 2).

Thus (%) has the same parity as ({Zﬁj) (mod 2), as desired.
Case 4: n is odd and k is even. Identity 151 in the exercises shows that (n—k)(7) =

n(";1). Consequently, arguing as in Case 3, we have

()-8 (47) = (50 = (52) ot

as desired. o

So how does this pertain to our original theorem? We need just a few facts about
binary representations. Recall that if = has binary representation (byby—1 - - - bybo)2, where
bi =0orl, then z = be2" + bp—12°"1 4+« + 112! + bp. Hence the parity of z is
determined by bp and |2/2] = b;2*~! + b,_12'~2 + ... 4+ b, has binary representation
(bebe—1 - - - baby)a.

This allows us to easily apply Lemma 10 when 7 and k are written in binary. For

. 76 e P o
example, let us evaluate the parity of (Z;), when both numbers are written in binary.

76 = 64 + 8+ 4 = (1001100),
52 = 32+ 16 + 4 = (0110100),

The leading zero for 52s binary expansion is inserted so that both numbers have the same
length. Now since both binary representations end in 0, we must have an (even) situation

. - even ¢
Hence by repeated use of Lemma 10, this has the same parity as

() (52 (59 (92 i
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(76) _ {(1001100), 76\ _ ((1001100);
52) ~ \(0110100), 12/ = \(0001100),
Figure 5.5. (75) is even, but (75) is odd.

Since the last quantity is (1), it follows from Lemma 10 that (75) must be even. In

general, (7) will be even if and only if we eventually reduce to (%‘:fé’ » which occurs if

and only if a 1 appears directly below a 0 in the binary expansions of k and n respectively.
See Figure 5.5.

Hence for (77) to be odd,

76=(1001100),

k must be of the form
k=(z00y=z00),

where 2,3, 2 can each be either 0 or 1. Thus there are 2° = 8 values of k for which (*¢)

will be odd. By the same reasoning, the number of ways for () to be odd is 27, where
J is the number of 1s in the binary expansion of n.

In fact, the proof tells you exactly which values of k produce an odd number. For 76,
they are:

64+8+4=176
64+8 =172

64 +4=068

0=0

A generalization of Theorem 8 modulo any prime and two different combinatorial
proofs, appears in the section of Chapter 8 called Lucas’ Theorem.

5.6 Notes

For innumerably more binomial coefficient identities, proved many different ways, see Ri-
ordan’s Combinatorial Identities{46], Graham, Knuth, and Patashnik’s, Concrete Mathe-
matics [28), or Wilf’s Generatingfunctionology [61]. The proof of odd numbers in Pascal’s
Triangle is based on the approach presented in Pélya. Tarjan and Woods [41].
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5.7 Exercises
Prove each of the identities below by a direct combinatorial argument.

Identity 151 Forn>k >0, (n—k)(5) =n("¢")-

Identity 152 For n.> 2, k(k—1)(§) =n(n—1)(373)-

Identity 153 Forn >3, 350 k(k—1)(k - 2) () =n(n-1)(n—-2) ("33
Identity 154 Forn > 4, (3)) = 3(2) +3(%).

Identity 155 For 0 <m <n, Yyso (B (%) = ()2 ™

Identity 156 For 0 <m <n, Y50 () ) = (3)2™1.

Identity 157 For m,n >0, Y50 (1) (2) = ("27)-

Identity 158 For m,n >0, 350 (1) (%2%) = (7)2™

Identity 159 Forn>1, 3,50k (M2 =n(>D).

Identity 160 Forn >0, ¥~ (2)° = (7).

Identity 161 Forn >0, 350 () G272 = (%)

The next identity can be proved using binomial or multinomial coefficient interpretations.
Identity 162 For m,n > 0, Y, ("1%) = (*tm+H),

Identity 163 Fort > 1,0 < c < n, (G1ft)°Gyiy equals

n— ml) (n - 932) (n - 37:—1) cergn=
“se G 1
22 (R0)00) - ()
where Gj is the jth element of the Gibonacci sequence beginning with Gy and G,.
Identity 164 For n,k 2 0, ((334)) = Xomer ((2)) (7FF)) -
Identity 165 For n >0, Y p_q (%) = fon.

Identity 166 For n>1, Y pg (35) = fon-1.
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Other Exercises
L. Prove for n > 0,m > 1, that 350 k(%) (o) = n("}77). Then apply the

m—k
same logic to arrive at a closed form for 3, (k) (%) (oe)-

2. Many combinatorial proofs for binomial coefficients can also be done by path
counting. Prove that the number of ways to walk from the point (0, 0) to the point
(a,d) such that every step is one unit to the right or one unit up is (*}?).

3. Combinatorially prove the identities below by path counting arguments.

(@) Fora,b>0, (*}%) = (*+2-1) 4 (ee70).

a-1

() Fora,b>0, Y50 (1) (o) = (°F%).
(©) For0<s<a, Yo )("""b"’) = (“f’).

a—k
@ Fora,b> 0, T (+¥) = (2+441),
(e For0<s<aandb>0, Zf,':s (™ (“";b_;m = (“"‘:"’1).
(D) This last identity only locks simple. For n > 0, 3¢ (%) (3722%) = 4~

4. Catalan numbers. Prove that the number of paths from (0, 0) to (2n,n) that never

go above the main diagonal y = z is 737 (7).

5. Partitions of integers. Let 7(n) count the ways that the integer n can be expressed
as the sum of positive integers, written in non-increasing order. Thus 7(4) = 5,
since 4 can be expressed as 4 =3 +1=2+4+2=2+14+1=1+1+4+1+1.
Prove that the number of integer partitions with at most a positive parts, all of
which are at most b, is (°**). (Example: When a = 2,b = 3, the ten partitions are:
3+3,3+2,3+1,3,24+2,2+1,2,1+1,1,¢4)

6. An ordered partition or (composition) of n does not require the summands to be
in non-increasing order. For instance 4 has eight ordered partitions: 4 =341 =
143=24+2=24+14+1=14+2+4+1=14+14+2=1+41+1+1. Prove that
the number of ordered partitions of n with exactly k parts is (;_;) and the total

number of ordered partitions of n is 2”1,






CHAPTER 6

Alternating Sign Binomial
Identities

6.1 Parity Arguments and Inclusion-Exclusion

In the last chapter, we proved, for n > 0, 3,54 (31) = 272 Since 3,54 (5) = 27,
this implies that half of all subsets of {1,...,n} are even. Consequently

() =2 ()

k>0 k>0

This suggests that there should be a simple one-to-one correspondence between the even
subsets of {1,2,...,n} and the odd ones. We begin with a bijective proof of this fact.

Identity 167 For n > (),

i (:) (-1)k =0.

k=0

Set 1: Let £ denote the set of even subsets {a,...,ax} of {1,...,n} where k is
an even number. This set has size >, even (%)-

Set 2: Let O denote the set of odd subsets {a;,...,ax} of {1,...,n} where k is
an odd number. This set has size Y, 44 (7)-

Correspondence: For X = {a3,a2,...,ax} € €, where 1 < a3 < az < +++ <
ax < n, consider the symmetric difference Y of X with {n}. Then

Y=Xeo&{n}

— {0;1,(12,---,0];,73} lfﬂ¢X,
- {al,ag,...,a,k_l} ifneX.

In other words, if n is not in X, then X @ {n} puts n into X, and if n is in X,
then X @ {n} removes it from X. Notice that X @ {n} has either one more or one
fewer elements than X, so it must have an odd number of elements. Further notice
that (X @ {n}) ® {n} = X, so the correspondence is reversible. Thus |£| = |O|, as
desired.

81
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If we sum only some of these numbers, we have the more general

Identity 168 For m > 0and n > 0,

3 ()er=cr(")

k=0

Notice that when m > n, this reduces to the previous identity, so we shall only
consider the case where 0 < m < n. The proof is practically the same as before, but now
our correspondence is almost one-to-one.

Set 1: Let £ denote the set of even subsets {ay,...,ax} of {1,...,n} where k
is an arbitrary even number that is less than or equal to m. This set has size

2k evenzo (&)-

Set 2: Let O denote the set of odd subsets {ay,...,ax} of {1,...,n} where k is an
arbitrary odd number that is less than or equal to m. This set has size 3, o4d>; (5)-

Correspondence: As in the last proof, the symmetric difference X & {n} will do
the trick. We separately prove the cases where m is even and m is odd.

When m is even and X is a subset in €, X @ {n} belongs to O, provided that
X @ {n} does not have more than m elements. The only unmatched subsets occur
in the ("~') instances where [X| = m and n ¢ X, since X @ {n} contains m + 1
elements. Thus when m is even, |€] = |0 + ("Y).

When m is odd and X is a subset in £, X @ {n} is always defined, but we miss
those members of O that contain m elements from {1,...,n — 1} since such a set
can only be hit by an m + 1 element subset of {1,...,n} that contains n. Here,
0] = (€l + (")

Combining the even and odd cases, we have that |€] — |O] = (—-1)™(™"1), as
desired.

Identity 167 can be used to prove the useful principle of inclusion-exclusion.

Theorem 11 For finite sets Ay, Az, ..., An, |A1 U A2U---U A, is equal to
Yol - D0 lAin4
1<i<n 1<i<j<n

+ ) JANANAL = +(-1)MA N A NN A
1<i<i<ksn

When n = 2, the principle of inclusion-exclusion says that
|41 U 4g| = |A1| + |A2| - |A, N Ay,

easily seen by the Venn Diagram in Figure 6.1 since |A; |+ | Az| counts all of the points in
| A1 U Az|, but the points in A; N A are counted twice. Hence these terms get uncounted
once by the —|A; N Az term.

Likewise, when n = 3, inclusion-exclusion says |4; U 4, U Ag| equals

|A1] + |Az| + |4s] — (|41 N Az| + A1 N A3l + | A2 N As]) + |4y N Az 0 A3
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U

Figure 6.1. With inclusion-exclusion, every element in the union is counted once.

The elements that are in exactly one set are counted by the sum |4, | + |42| + |A3]
but elements in more than one set are overcounted. To remedy this, we subtract the
next three terms (—]A4; N Az| — |A1 N As| — |A2 N As|). Now each point in exactly
two sets has been counted once [more precisely, they have been counted two times and
uncounted one time], but points in all three sets have been counted zero times [counted
three times then uncounted three times] so the last term |A; N A2 N A3| is added to remedy
this. Consequently, every element that is in at least one set is counted exactly once (and
elements in no sets are never counted.)

To see that inclusion-exclusion works for any n, consider an element z in exactly k
of the n sets for some 1 < k < 7. Then |A11+ [A2| + - - - +]Ay| will count that element
exactly k times. Now  appears in exactly (3) pairs of sets, s0 3, <; cicn [4i N 4;] will
uncount it (§) times. Then 3=, ;s <r<n [4i N A;j N Ax| will count it () times, and so
on. Overall, element z will be counted

()= (2)# () - )+~ G)

times. By Identity 167, this quantity equals (’5) = 1. Hence every element in |4; U A2 U
«+-U Ay is counted exactly once.

We have just used Identity 167 to prove the principle of inclusion-exclusion. And yet,
satisfyingly, we can also use inclusion-exclusion to prove Identity 167.

Question: Suppose A; = A =---= A, = {1}. Find |[4; UA U---U 4,].
Answer 1: Clearly, A; U Ap U---U A, = {1} has size 1.

Answer 2: Using inclusion-exclusion, for 1 < k < n, each intersection of k subsets
contributes 1 to our alternating sum. Thus our union has size

n n n n
- —ee (-1 ).
(3)-()+()-+()
We can learn even more about inclusion-exclusion by Identity 168. First observe that if
A,..., A, are disjoint sets, then |4 U---U Ap| = |A1]|+- - -+ |An|. But if any element
is in at least two sets, then clearly Y -, | A;| overcounts | Ay U- - -U A,|. More generally,

suppose that we apply the first m steps of inclusion-exclusion to evaluate |4 U- - -U A,].
By the proof of inclusion-exclusion, any element that appears in exactly k sets will be

counted (,;) . (g) N (g) ._ (;‘) ooe o (-1 (:z)
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times. But by Identity 168, this quantity simplifies to (%) + (-1)™*(*.!) = 1+
(-1)mH (k;l). Note that when k < m, then (*-1) = 0, and the element is counted
exactly once, as desired. However, if k > m, then that element will either be overcounted
or undercounted (";1) times, depending on the parity of m. Consequently, if any element
appears in more than m of the sets A,,..., Ay, then the first m steps of inclusion-
exclusion will necessarily overcount |A; U- - -U Ay| when m is odd, and will necessarily
undercount |A; U- - -UA,| when m is even. This is sometimes referred to as Bonferroni’s

Inequality.

6.2 Alternating Binomial Coefficient Identities

In this section, we shall prove some interesting binomial coefficient identities with al-
ternating terms, either by demonstrating almost one-to-one correspondences between two
sets or by invoking the principle of inclusion-exclusion. Some of these identities utilize
the Kronecker delta function 6, which equals 1 whenever n = m, and is 0 otherwise.
We begin with the following generalization of Identity 167.

Identity 169 For m,n >0,

30 (e

k=0

Set 1: For n,m > 0, let £ denote the set of ordered pairs (5,7") where T C S C

{1,...,n}, where |T| = m and |S] is even. For even numbers k, £ contains (})(*)

elements where |S| = k, and therefore contains 3", even (7) (X) elements altogether.

Set 2: For n,m > 0, let O denote the set of ordered pairs (S,T) where T C S C
{L,...,n}, where |T| = m and |S] is odd. For odd numbers k, O contains (})(*)
elements where |S| = k, and therefore contains 3, oqq (%) (%) elements altogether.
Correspondence: First note that when n < m, both £ and O are empty, so the
identity is trivially true. When n = m is even, then £ contains one element, namely
T=S={1,...,n}, and O is empty. Likewise, when n = m is odd, then € is
empty and O contains one element. Either way, the sizes of £ and O differ by exactly
one element, as predicted by the identity.

When n > m, we establish a one-to-one correspondence between £ and © as
follows. For any (S,T) pair, let = be the largest element of {1,...,7n} that is not in
T. (Such an z must exist since n > m. Now if z € S, we remove it. If z ¢ S, we
put it in. In other words, we associate (S, T’) with (S @z, T). Since |S| and |S @ z|
have opposite parity, we have a one-to-one correspondence between £ and O.

The same idea can be applied to the next identity where we first choose a subset
ScC{1,...,n} followed by a size m multisubset of S.

Identity 170 For n > m,

£0) () -
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Set 1: For n > m > 0, let £ denote the set of ways to choose an even number
of candidates from {1,...,n}, then allow m votes to be distributed among them.
For an even number of candidates k, £ contains (7)((%)) elements, and therefore

contains 3. even (%) (%)) elements altogether.

Set 2: For n > m > 0, let O denote the set of ways to choose an odd number
of candidates from {1,...,n}, then allow m votes to be distributed among them.
For an odd number of candidates k, O contains (})((%)) elements, and therefore

contains 3", oqq (7) (X)) elements altogether.

Correspondence: If m = n, the situation where all n candidates are chosen and
each receives one vote can only occur one way. This is the unmatched situation and
it contributes (—1)™ to the summation. Otherwise, we shall pair together elections
with even and odd numbers of candidates. For a given element of £, let = denote the
largest member of {1,...,7n} who receives no votes. Since i < n, such an z exists.
If z is not among the candidates, put = on the ballot (although he receives no votes).
If z is among the candidates, we may remove candidate = from the ballot and not
disrupt any of the votes since x receives no votes. In other words, we are associating
the ballot S and its multisubset of votes T' with (S @z, T'), and the identity follows.

In the next identity, we extend the range of Identity 170 by allowing m to exceed n.
Identity 171 For any m,n > 0,

26 () er=er((a2n)

Here, Set 1 and Set 2 are unchanged from the previous proof. When m < n, this
reduces to the previous identity. When m > n, we have the following correspondence.

Correspondence: Here, ((,,”,)) counts (S,T) where all elements of {1,...,n}
are on the ballot, and each receives at least one vote. These pairs remain unmatched.
Otherwise, choosing z as the largest numbered element of n receiving no votes and
associating (S, T) with (S @ z,T) yields the same correspondence between £ and
O.

The next two identities are tiling identities in disguise. Recall from Identity 4 in
Chapter 1 that the number of square-domino tilings of an n-board with exactly k dominoes

is ("z¥). Consequently, )
Z(—l)k("; )

k>0

counts the difference between the number of n-tilings with an even number of dominoes
versus those with an odd number of dominoes.

Identity 172 Forn >0,

ifn=0or1 (mod 6),

—lk(n_k)= 0 ifn=2orb (mod6),
kz_>_o( ) ; —1 ifn=3or4 (mod 6).
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first break of form
3j+2

Figure 6.2. When n = 2 (mod 3), an n-board with an even number of dominoes can be easily
transformed to an n-board with an odd number of dominoes, and vice versa.

Set 1: Let £ denote the set of n-tilings with an even number of dominoes. Thus
|€]= 2"k even (n;k)'

Set 2: Let O denote the set of n-tilings with an odd number of dominoes. Thus
101 =% 0ad (")-

Correspondence: We first find a one-to-one correspondence between £ and O when
n =2 or 5 (mod 6), i.e., when n = 2 (mod 3). For a given tiling with an even
number of dominoes, find the first breakable cell of the form 35 + 2. Such a cell
must exist since the last cell, cell n, is of this form. To avoid having breaks at cells
3i+ 2 for i < j, we must begin with j “square-domino” pairs. See Figure 6.2. Cells
3j +1 and 3j + 2 are either covered by the same domino or by two squares. Our
correspondence from £ to O is as follows: If cells 35+ 1 and 37 + 2 are covered by
the same domino, then turn that domino into two squares. If cell 37 + 1 and 37 + 2
are covered by two squares, then turn those two squares into a domino. Since our
tiling remains breakable at cell 3j + 2 and remains unbreakable at cells 3i + 2 for
i < j, it is easily reversed. Consequently, for n = 2 (mod 3), |€] = |O|.

If n # 2 (mod 3), then there is exactly one tiling (belonging to either £ or O,
depending on n) that is unbreakable at all cells of the form 3: + 2. Specifically, if
n = 6¢ + 1, then the unmatched tiling consists of 2¢ square-domino pairs followed
by a single square. Since the number of dominoes is even, then for n = 1 (mod 6),
|€] = |O| = 1. Likewise, for when n = 0 (mod 6). Similarly, when » = 6¢ + 3 or
n = 6¢+4, the unmatched tiling, consisting of 2g+ 1 square-domino pairs (followed
by a single square when n = 6¢ + 4), belongs to O since it contains an odd number
of dominoes. Here, we have |€] ~ |O] = —1.

Next we consider “colored” square-domino tilings of an n-board where we now have
two colors for squares (black and white) but just one color for dominoes.

Identity 173 For n > 0,

Sr(" L e

k>0

Set 1: Let £ denote the set of n-tilings with an even number of dominoes. Once
the locations of the k dominoes are determined the remaining n — 2k cells may be
covered by black or white squares. Consequently, |€] = ¥, even ("7¥)272".

Set 1: Let O denote the set of n-tilings with an odd number of dominoes, Here,
101 = T oaa (") 272

Correspondence: Here, we single out the n+1 tilings consisting of k black squares
followed by n — k white squares for some 0 < k < n. These tilings are in £ since
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i §i+l

Figure 6.3. The first occurrence of a domino or a white-black pair is converted into the other
form.

they contain zero dominoes. All other tilings must contain a domino or a white square
followed by a black square (a “white-black™ pair). For such a tiling in &, let ¢ denote
the first cell for which cells ¢ and i+ 1 are covered by either a domino or by a white-
black pair. In the first case, we convert that domino into a white-black pair; in the
second case, we convert the white-black pair into a domino. See Figure 6.3. Either
way, we change the parity of the number of dominoes. Since the correspondence is
easily reversed, we have |£] — |O]| =n +1.

The previous identity can also be proved using inclusion-exclusion.

Question: How many ways can we tile an n-board using only black and white
squares and with the restriction that no black square is immediately preceded by a
white square (no dominoes)?

Answer 1: There are n + 1 such arrangements, namely those consisting of k black
squares followed by n — k white squares for some 0 < k < n.

Answer 2: Since each of the n cells must be covered by a black or white square
there are 2™ arrangements, ignoring the restriction. From these we must subtract those
arrangements where a white square precedes a black square. For 1 <7 <n -1, let
A; denote the set of all-square arrangements where cell ¢ is white and cell 4+ 1 is
black. Consequently, the answer to our question is

2" — A1 UAaU---Udpq|.

Notice that it is impossible for a tiling to be in both sets A; and A;41 since cell i+1
would have to be both black and white. Consequently, for a tiling to be in k of these
sets, it has 2k of its cells prescribed (by placing & *‘white-black” pairs of squares at
the prescribed locations) and the remaining n — 2k cells can be covered in 272
ways. See Figure 6.4. The number of ways that & of the sets A; can be chosen is equal
to the number of ways that a traditional uncolored n-board can be tiled with exactly k
dominoes, namely (®7*). Consequently, by the principle of inclusion-exclusion, we
have that the number of restricted arrangements is 2" — 3,5, (—1)*~1 (" F)2n-2k,

or more compactly: 3-,5o(—1)* g b A

N N OER B

123456 789

Figure 6.4. A 9-board that belongs to sets Ai, A3, and A7 can be covered with black and white
squares in 23 ways.
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Finally, since we INtroduced this chapter with inclusion-exclusion, it seems only fitting
that we EXit this chapter that way as well. The inclusion-exclusion formula can be stated
more compactly as

n
|A1U---UA| =) ) |As(-1)° 7,

$=1|8]|=s

where the second summation is summing over all s-element subsets S C {1,...,n}, and
Ag consists of those elements that appear in the sets A; where ¢ € S. (Put another way,
Ag = NesA;. Note that elements of Ag may also appear in other A; where j & S.)
Suppose we are interested in counting the number of elements that appear in at least
m of the n sets Ay,...,A,? As it turns out, the inclusion-exclusion formula, with one
slight modification, gives us the answer when we only use the sets Ag where |S| > m.
Specifically, for 1 < m < n, the number of elements that appear in at least m of the n

sets Aj,...,Ap is
2 (s-1 _
> (27)) X tsii-v

s=m |Sl=s

Notice that when m = 1, this is the usual inclusion-exclusion formula.

Naturally an element that appears in fewer than m sets is never counted by the above
formula. To prove the formula, we need to show that an element in at least m of the
above sets is counted exactly once. Since an element that appears in exactly k sets will
also appear in (") sets of size s, our problem reduces to proving that for any & > m,

()=

S=m

Substituting (¥) = (%), (37}) = ((,™.)) and letting d = s —m and y = k — m, we

m-1

prove the equivalent identity below:

Identity 174 For y,m > 0,

() () =

Background: A dessert shop sells m different flavors of ice cream and y different
flavors of frozen yogurt. Art and Deena plan to purchase a total of y scoops of
ice cream or yogurt with the following restrictions. Art’s container will only have
distinct flavors. Deena will only select among ice cream flavors (no yogurt) but she
is willing to have flavors repeated in her container. The number of ways Art and
Deena can leave the dessert shop with Deena’s container containing d scoops and
Art’s container containing y — d scoops is (';‘_‘fg) (D) -

Set 1: Let £ denote the ways that Art and Deena can leave the dessert shop where
Deena has an even number of scoops. This set has size 3y even (T2) (™).

Set 2: Let O denote the ways that Art and Deena can leave the dessert shop where

Deena has an odd number of scoops. This set has size 3", (44 (’;fg) (V)E

Correspondence: We provide an almost one-to-one correspondence between £ and
O. The only unmatched allocation in £ accurs when Deena leaves empty-handed and
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Largest numbered ice cream Largest numbered ice cream
occurs in Art's bowl: does not occur in Art's bowl:

Figure 6.5. Except when all y scoops consist of frozen yogurt in Art's container, we can always
transfer the largest numbered ice cream scoop from one container to the other.

Art chose as his y scoops all y yogurt flavors. (This was most inconsiderate on Art’s
part, since Deena can’t even share one of Art’s scoops!) Otherwise, at least one of the
ice cream flavors (numbered from 1 to m) will appear in at least one container. If ¢ is
the largest numbered flavor to appear in at least one container, we change the parity
of Deena’s container as follows. If flavor Z is in Art’s container, then he transfers it
to Deena’s container. (Some might say that Deena is getting her just desserts; others
might simply call it just-ice.) Otherwise, Deena has at least one scoop of flavor ¢ and
she transfers it to Art’s container. Notice that after the transfer, ¢ remains the largest
numbered flavor to appear in at least one container, so the process is easily reversed.
See Figure 6.5. Hence, except for the one inconsiderate allocation, there are as many
even allocations as odd ones.

6.3 Notes

Our approach illustrates the signed involution technique described in Chapter 4 of Stanton
and White's Constructive Combinatorics [53] which is in turn based on the more general
signed set principle of Garsia and Milne [25]. The connection between Garsia and Milne’s
work and the principle of inclusion-exclusion is explicitly reported by Zeilberger in [63].

6.4 Exercises

1. Counting Onto Functions Over a period of m days, in a class of n > 0 students,
each day a student is selected to lead the class in song. Let A(m,n) count the
number of ways that the leaders can be chosen so that every student gets to lead at
least once. Use inclusion-exclusion to prove

= n m k
A(m,n) =) (k) (n - k)™(-1)F.
k=0
2. As an immediate corollary of Exercise 1, deduce that when m < n,

i (:) (n—k)™(=1)* =0.

k=0
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. As an immediate corollary of Exercise 1, deduce that when m = n,

n

Z (Z) (n—k)*(~1)* =n!

k=0

. As an immediate corollary of Exercise 1, deduce that when m =n +1,

S

k=0

. Now prove Exercise 1 by finding a correspondence between an appropriately chosen

even set and odd set.

Hint: You may wish to first find a bijective proof for Exercise 2 and an almost
one-to-one correspondence for Exercise 3.

. Multiplying Identity 172 by (—1)" produces the simpler identity below. Prove it by

finding the appropriate correspondence.

Identity 175 For n > (,

1 ifn=0 (mod 3),
-1k n—ky _ 0 ifn=2 (mod 3),
kzzo( ) ( ) ) {-1 ifzslggds).

. Bracelet identities Recall from Chapter 2 that the number of n-bracelets (i.e.,

circular boards of length n covered with squares and dominoes) with exactly &
dominoes is 2 (™). Using this interpretation, we can derive some interesting
alternating binomial coefficient identities. Prove the following identity by finding
the appropriate correspondence between even and odd sets.

Identity 176 For n > 0,

k . ?nig(mgd(m'ds)
. n [(n- ifn=1o0r5 (mod 6),
’;(_l)kn__.k( k )= -1 ifn=2or 4 (mod 6),
> -2 ifn=3 (mod 6).

Challenge: Can you find a proof of the above using inclusion-exclusion?

. Using the principle of inclusion-exclusion, prove

Identity 177 For n >0,

S ()2 (" P k) 2=,

k>0

9. Prove the previous identity by finding the appropriate correspondence.

More exercises with alternating sums are given in Chapter 7.



CHAPTER 7

Harmonic and Stirling Number
Identities

Definition The nth Izannomc number i 1s Hn . 1+ + +-- + . The first few harmonic
numbers are Hy =1, Hy = 2, H3 = 8. H,= ®,

Definition The Stirling number of the ﬁrst kind [ k] counts the number of permutations of

n elements with exactly k cycles. Some examples when k= 2: [5] =0, [3] =1, [}] =3,
5

[3] =11, [5] = 50.

Definition The Stirling number of the second kind {"} counts the number of partitions
of {1,...,n} into exactly k subsets. Some examples when k = 2: {3} =0, {Z} =1,

2 =3 {}=7 {3} =15

7.1 Harmonic Numbers and Permutations

Harmonic numbers are defined to be partial sums of the harmonic series. That is, for
n 21, let
1 1 1
Hn—1+‘é‘+'3‘+"'+;.

The first five harmonic numbers are H; = 1, Hp = 3/2, Hz = 11/6, H; = 25/12,
H; = 137/60. For convenience we define Hp = 0. Since the harmonic series diverges, Hy,
gets arbitrarily large, although it does so quite slowly. For instance, Hj 000,000 & 14.39.

Harmonic numbers even appear in real life. If you stack 2-inch long playing cards to
overhang the edge of a table as far as possible, the maximum distance that n cards can
hang off the edge of the table is H,, [28]. For example, 4 cards can be stacked to extend
past the table by just over 2 inches, since Hy = -2-§

It can be shown [28] that H,, is never an mteger for n > 1. This would suggest that
no combinatorial interpretation of them would exist. But after seeing harmonic number

identities like the three below, we might think otherwise.

Identity 178 Forn>1, Yo"t Hy = nH, —n.

o1



92 CHAPTER 7. HARMONIC AND STIRLING NUMBER IDENTITIES

Identity 179 For 0 <m <n, e, (X)Hi = () (Hn — 227).

m

Identity 180 For 0<m <n, Yer, (5) 2% = (2)(Ha — Hn).

k=m

Although all of these identities can be proved by algebraic methods, the presence of
binomial coefficients suggests that these identities can also be proved combinatorially.
Indeed, H,, can certainly be written as a (typically nonreduced) fraction of the form 3%.
Since the denominator has obvious combinatorial interpretation, it makes sense that the
numerator should have one as well. So what are harmonic numbers counting? That will
be revealed in the next two sections. First, however, we need to say a bit more about
factorials and permutations.

There are many ways to think about n! = n(n — 1)(n — 2) - - - 1. For instance, as we
saw in the proof of Identity 125, n! counts the number of ways that 1 through n can
be arranged since there are n choices for the first number, n — 1 choices for the second
number and so on. Such an arrangement is called a permutation of 1,2,...,n. Using this
interpretation, we can easily explain

Identity 181 Forn>1, Y p  k-kl=nl—1.

Question: How many ways can the numbers 1 through n be arranged, where we
exclude the natural permutation 12 3 ... n?

Answer 1: There are n! — 1 such permutations.

Answer 2: Condition on the first number that is not in its natural position. For
1 < k £ n -1, how many permutations have n — k as the first number to differ
from its natural position? Such a permutation begins 12 3 ... n—k — 1 followed
by one of k numbers from the set {n — k + 1,n — k +2,...,n}. The remaining k
numbers (now including the number n — k) can be arranged k! ways. Thus there are
k - k! ways for n — k to be the first misplaced number. Summing over all feasible
values of k yields the left side of the identity.

Here is another way to look at permutations that will be more useful to us in this
chapter. The arrangement 265431 can be described as follows: The number 1 is sent to
location 6; number 6 is sent to location 2; number 2 is sent to location 1. Numbers 3
and 5 have swapped positions, and number 4 has stayed in its natural position. We could
express this permutation as 1 -6 —+2 — 1,3 = 5 — 3, 4 — 4, or more compactly as
(162)(35)(4)- This permutation has three cycles which could be represented in any number

of different ways including (4)(53)(621), but not by (4)(53)(126). To standardize our
representations we adopt the following notational convention:

Permutation notation: For a permutation of n elements with & cycles, each cycle
begins with its smallest element, and the cycles are listed in increasing order of their
smallest element.

Thus the arrangements 265431, 612345, and 134625 are to be represented by the permu-
tations (162)(35)(4), (123456), and (1)(25643) respectively.

So the denominator of Hy, counts permutations. We will show that the numerator of
H,, is a Stirling number of the first kind which counts special kinds of permutations.
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7.2 Stirling Numbers of the First Kind

We begin with a combinatorial definition for [7], a Stirling number of the first kind.

Definition For integers n > k > 0, let [7] count the number of permutations of n
elements with exactly k cycles.

Equivalently [}] counts the number of ways for n distinct people to sit around k iden-
tical circular tables, where no tables are allowed to be empty. [7] is called the (unsigned)
Stirling number of the first kind. As an example, [5] = 3 since one person must sit alone
at a table and the other two have one way to sit at the other table. That is, [3] counts the
three permutations by (1)(23), (13)(2) and (12)(3).

Likewise, [3] = 11 counts the eleven permutations (1)(234), (1)(243), (12)(34),
(13)(24), (14)(23). (123)(4), (132)(4), (124)(3), (142)(3), (134)(2), (143)(2).

At this point, we have all the tools needed to understand harmonic numbers combina-
torially, and the reader who wants to get right to the harmonic numbers can go directly to
the next section. In the remainder of this section, we shall combinatorially explore more
properties of Stirling numbers of the first kind. Although [}] has no explicit formula, it
satisfies many nice properties.

Since every permutation can be factored into some number of cycles, we immediately
have

Identity 182 Forn > 1,

In case the reader is not comfortable with permutations, we present another proof of
the above identity using people and tables.

Question: How many ways can n people be seated around n indistinguishable cir-
cular tables?

Answer 1: By conditioning on the number of nonempty tables Y ¢ _; [¥]-

Answer 2: Person 1 sits down at a table (one way, since tables are indistinguishable).
Then person 2 has two choices: either sit to the right of person 1 (which is equivalent
to sitting to the left) or start a new table. Regardless of 2s decision, person 3 has
three choices: either sit to the right of 1, sit to the right of 2, or start a new table. In
general for 1 < k < n, person k will have k choices: sit to the right of 1 or 2 or - - -
or (k — 1), or start a new table. Altogether there are n! possible arrangements.

For a more general version of this seating argument, see the proof of Identity 218 in

Chapter 8. _
From the definition, we see that [['] = 1 counts the permutation (1)(2)(3) - - (n) and

[g] = 1, but otherwise [j] = 0. Likewise, we have [¥] = 0 whenever n <0 or k <0 or
n < k. Now [.",] = (%) since a permutation with 7 — 1 cycles is determined by which
two elements appear in the same cycle. Also, for n > 1,

[’1‘] =(n-1)
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since a permutation of n elements in one cycle must be of the form (lazagz - - a,) where
G203 - - G, is an arrangement of the numbers 2 through n.

The notation for Stirling numbers of the first kind is suggestive of binomial coefficients
because they share similar properties. As Identity 127 can be used to recursively compute
binomial coefficients, the following identity can be used to recursively compute [7].

Identity 183 Forn >k >1,
n n-1 n—1
[k]‘[k—lh("‘”[ 2]

Question: How many permutations of » elements have exactly &k cycles?
Answer 1: By definition, [;].

Answer 2: Condition on whether or not element n is alone in its own cycle or not.
If n is alone in its own cycle, then the remaining 7 — 1 elements can be placed into
k—1 cycles in [2=1] ways. If n is not to be alone, then we first arrange elements 1
through » — 1 into k cycles (there are [ '] ways to do this), then insert element n
to the right of any element. This gives us (n — 1) [";1] total permutations where n

is not alone. Altogether, we have [;_1] + (n — 1)[";*] permutations with & cycles.
A concrete example is given in Figure 7.1.

Just as binomial coefficients can be computed by Pascal’s triangle, Identity 183 allows
Stirling numbers to be displayed in a similar way.

n\k|0 1 2 3 4 5 6 7
0 1 0 0 0 0 O0 o0O
1 0 1 0 0 0 o0 o00O
2 0 1 1 0 0 o0 00O
3 0 2 3 1 0 0 00O
4 0 6 1 6 1 0 00
5 0 24 50 35 10 1 00
6 0 120 274 225 8 15 1 0
7 0 720 1764 1624 735 175 21 1

Table 7.1. Stirling numbers of the first kind [7].

Starting in row 2 of Table 7.1, it appears that 3 [¥] over odd k is the same as when
summed over even k. This is not a coincidence as the next identity shows.

Identity 184 For n > 2,

i l:] (-1)* =0.

Set 1: The set of permutations of n elements with an even number of cycles. This
set has size 3 even [1)-
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(a) 5 is alone in a cycle:

[ (1)(234)(5)
(1)(243)(5)
(12)(34)(5)
(18)(24)(5)
4 (14)(23)(5)
[2] choices ¢ (123)(4)(5)

(124)(3)(5)
(132)(4)(5)
(184)(2)(5)
(142)(3)(5)
L (143)(2)(5)

(b) 5 is not alone in a cycle:

([ (1)(2)(34)
(1)(23)(4)
Each of the [:] choices | 8%()%3 8; leads to 4 placement choices for 5.

(13)(2)(4)
L (19)(2)(3)

(154)(2)(3)

For example (14)(2)(3) = 8:?()2(38;

(14)(2)(35)

Figure 7.1. When considering [3] either (2) 5 appears alone in a cycle or (b) 5 is immediately to
the right of 1, 2, 3, or 4 in one of [3] arrangements.

Set 2: The set of permutations of 7 elements with an odd number of cycles. This set

has size 3, odq [&)-

Correspondence: For any permutation with at least two elements, the element 2 must
either appear in the first cycle or as the first element of the second cycle. In the first
case, the permutation begins (layaz---a;2byby---bi)(crce--+) - - - where j and k
are nonnegative. By converting this to (layaz - - a;)(2bybz - - - bg)(crca - +) - -+, we
obtain a permutation with 1 and 2 in different cycles, but with one more cycle than
before. Likewise, if 1 and 2 are in different cycles (necessarily leading the first two
cycles), then by merging the first two cycles they are now in the same cycle, but
with one fewer cycle than before. Thus every permutation corresponds to a unique
permutation of opposite parity, as desired.

The Stirling numbers of the first kind are frequently defined as coefficients in the
expansion of the rising factorial function [20]:

Identity 185 )
z(z+1)(z+2)---(z+n-1)= Z [:;]mm

m=1
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Just about any Stirling number fact can be proved using this definition. To show that
this algebraic definition of Stirling numbers is equivalent to the combinatorial definition,
one typically proves that both satisfy the same initial conditions and recurrence relation.
However a more direct correspondence exists [2], which we illustrate with an example.

By the algebraic definition, the Stirling number [%f] is the coefficient of z° in the
expansion z(z + 1)(z +2) - - - (z +9). The combinatorial definition says ['] counts the
number of ways that elements 0,1,2,...,9 can sit around three identical circular tables.
Why are these definitions the same? The first definition gives the sum of all products of
seven numbers chosen from among 1 through 9. Surely this must be counting something.
What is a term like 1-2-3-5-6-8-9 counting? As illustrated in Figure 7.2, this counts
the number of ways elements O through 9 can seat themselves around three identical
tables where the smallest elements of the tables are the “missing” numbers 0, 4, and 7.
To see this, we pre-seat numbers 0,4, 7 then seat the remaining numbers one at a time
in increasing order. The number 1 has just one option—sit next to 0. The number 2 then
has two options—sit to the right of 0 or sit to the right of 1. The number 3 now has three
options—sit to the right of 0 or 1 or 2. The number 4 is already seated. Now number 5 has
five options—sit to the right of 0 or 1 or 2 or 3 or 4, and so on. A general combinatorial
proof of Identity 185 can also be done by the preceding (or should that be “pre-seating™?)

argument.
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Figure 7.2. How many ways can the numbers 1,2, 3, 5,6, 8,9 seat themselves around these tables?
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7.3 Combinatorial Interpretation of Harmonic Numbers

We are now ready to state the main result of this chapter.

Combinatorial Theorem 11 For n > 0, the nth harmonic number is

"]
H, = —;l—

Before proving this, we set some notational conventions. Let 7;, denote the set of
arrangements of the numbers 1 through n into two disjoint, nonempty cycles. Thus || =
[3]- For example, 75 includes the permutation (185274)(396), but not (195)(2487)(36)
nor (123)(4567)(8)(9). By our notation for permutations, the cycle containing 1 is always
written first; consequently we call it the left cycle. The remaining cycle is called the right
cycle. All permutations in 7;, are of the form (a1a3...a;)(aj41-..a,) Where 1 < j <
n—1, a) =1, and ;4 is the smallest element of the right cycle.

Theorem 11 can be rewritten as follows.

Identity 186 For n>0, [*3'] = nlH,.

Question: How many permutations of n 4 1 elements have exactly 2 cycles?
Answer 1: By definition, [*37].

Answer 2: Condition on the number of elements in the right cycle. For 1 < k < n,
we create a permutation of # + 1 elements with & elements in the right cycle and
n—k+1 elements in the left cycle. First choose & elements from {2,...,n+1} ((})
ways), arrange these elements in the right cycle ((k — 1)! ways), then arrange the
remaining n — k elements in the left cycle following the number 1 ((n — k)! ways).
Hence there are (})(k — 1)!(n— k)! = % permutations of 7,41 With & elements in
the right cycle. Summing over all %, the number of permutations of n + 1 elements
with exactly two cycles is Y p_, 2 = nlH,, as desired.

Here is another way to see that "T' counts permutations with two cycles where the
second cycle has k elements. There are n! ways to arrange the numbers 1 through n + 1
such that the number 1 is written first. Such an arrangement has the form 1a;a3 - - - a,.
From this we create the 2-cycled permutation (lajaz---ap—k)(Gn—k+1Gn—k+2°**Cn)
with & elements in the right cycle, but will it be in standard form? Only if a, x4 is the
smallest number in the set {@n—k+1,@n—k+2,---,@n}. This happens one time out of .
Hence there are %' permutations of 7 + 1 elements with exactly k elements in the right
cycle.

y Using an alternate interpretation of -'lk!- gives a different method to answer the combi-

natorial question at hand.

Answer 2': Condition on the smallest element in the right cycle. For 2 <r <n+1,
we create a permutation of 7+ 1 numbers where the right cycle begins with r. Such
a permutation is of the form (1---)(r- - -), where elements 1 through r —1 all appear
in the left cycle, and elements  + 1 through » + 1 can go in either cycle. To count
this, arrange elements 1 through r—1 into the left cycle, listing element 1 first. There
are (r — 2)! ways to do this. Place element = into the right cycle. Now we insert
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elements » + 1 through n + 1, one at a time, each immediately to the right of an
already placed element. In this way, elements 1 and r remain first (and smallest) in
their cycles. Specifically, the element 7+ 1 can go to the right of any of the elements
1 through 7. Next, r + 2 can go to the right of any of the elements 1 through r + 1.
Continuing in this way, the number of ways to insert elements 7 + 1 through n + 1

1S
nl

=@Qm'

This process creates a permutation in 7,43 With » as the smallest element in the
right cycle. Thus, for 2 < r < n 4+ 1, there are

r(r+1)(r+2)---n

n! nl
- i =71

permutations with two cycles, where 7 is the smallest element in the right cycle.
Summing over all values of 7 gives us

n+l n
n! 1

—_— =l E R n!Hn

r=2r—1 k=1k

permutations, as desired.

A final way to see that nl/(r — 1) counts permutations of the form (1---)(r---) is
to list the numbers 1 through n + 1 in any order with the provision that 1 be listed first.
There are n! ways to do this. We then convert our list 1 a3 az--- 7--+ ap41 to the
permutation (1 ag a3+ --)(r- -+ ap41) by inserting parentheses. This permutation satisfies
our notational convention if and only if the number 7 is listed to the right of elements
2,3,...,7 — 1. This has probability 1/(r — 1) since any of the elements 2,3, ..., have
the same chance of being listed last among them. Hence the number of permutations that
satisfy our conditions is n!/(r — 1).

74 Recounting Harmonic Identities

With our understanding of the interactions between harmonic and Stirling numbers, we
now provide combinatorial explanations of other harmonic identities.

In this section, we convert Identities 178, 179, and 180 into statements about Stirling
numbers, then explain them combinatorially. Our combinatorial proofs of Theorem 11
were obtained by partitioning the set 7,4, according to the size of the right cycle or the
minimum element of the right cycle, respectively. In what follows, we shall transform
harmonic Identities 178, 179 and 180 into three Stirling number identities, each with
[3] on the left-hand side. The right-hand sides will be combinatorially explained by
partitioning 7, according to the location of element 2, the largest of the last ¢ elements,
or the “neighborhood” of the elements 1 through m.

Thus for the next three “harmonic™ identities, we shall repeat the same question.

Question: How many permutations of n elements have exactly two cycles?

Answer 1: By definition. [7].



74. RECOUNTING HARMONIC IDENTITIES 99

The challenge will be to find a simple combinatorial interpretation of the right side of the
identity.

Our first identity is equivalent to Identity 178. The equivalence can be seen by re-
indexing (n :=n — 1) and applying Combinatorial Theorem 11.

Identity 187 For n > 2,

[’2‘] = (n—l)!-l-:Z: a2 [’““2”1].

Answer 2: Here we condition on whether or not the element 2 appears in the left
cycle, and if so, how many elements appear to the right of 2. From our second
proof of Combinatorial Theorem 11, we know that (n — 1)! counts the number of
permutations in 7, where the number 2 appears in the right cycle. It remains to show
that

= (n 2)l [k + 1‘

k—l

counts the number of permutations in 7,, where 2 is in the left cycle. Such a permu-
tation is of the form

(Lay a2+ apn2-% 2 by ba---bj—1)(bj - br),

forsome 1 <k<n-2and 1< j <k Next we assert that the number of such
permutations with exactly k terms to the right of 2 is 2222 [F11].

To see this, we can select ay, @a, - . . , Gn—2— from the set {3,...,n}in (n-2)!/k!
ways. From the unchosen elements, there are [*+] ways to create two nonempty

cycles of the form (2by ...b;j—1)(b;...bx) where 1 < j < k. Hence there are

ity

permutations in 7, with exactly k terms to the right of 2, as was to be shown.

We apply a different strategy to prove the more general Identity 179, which after
applying Combinatorial Theorem 11 and re-indexing (n := n—1, m := ¢ — 1, and
k := k — 2) is equivalent to the following identity.

Identity 188 For1<t<n-—1,

-2 [ e

Answer 2: Here we condition on whether or not the largest of the last t elements
is alone in its own cycle, and if not, the value of the largest of the last ¢ elements.
For 1 < t < n— 1, we define the last t elements of (1az---a;)(@j4+1---an) to be
the elements @n,@n-1,. - - ,an41-t, €ven if some of them are in the left cycle. For
example, the last five elements of (185274)(396) are 6,9,3,4, and 7.

Next we claim that for 1 < ¢ < n — 1, the number of permutations in 7,
where the largest of the last f elements is alone in the right cycle is (n — 1)!/t.
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Here, we are counting permutations of the form (laz...a,—1)(a,) where an, =
Max{@n+1~t, Gn4p2—ts- - -y OGn—1,0n }. Among all (n— 1)! permutations of this form,
the largest of the last ¢ elements is equally likely to be anywhere among the last ¢
positions. Hence (n — 1)!/t of them have the largest of the last ¢ elements in the last
position.

Next we claim that for 1 < ¢ < n — 1, the number of permutations of 7, where
the largest of the last ¢ elements is not alone in the right cycle is

[k 1} (n 1-t)!

1

RARNICEED
To see this, we count the number of such permutations where the largest of the last
t elements is equal to k. Since the number 1 is not listed among the last ¢ elements,
we have £ + 1 < k < n. To construct such a permutation, we begin by arranging
numbers 1 through k — 1 into two cycles. Then insert the number & to the right of
any of the last ¢ elements. There are [*;]¢ ways to do this. The right cycle contains
at least one element less than k& so k is not alone in the right cycle (and could even be
in the left cycle). So that k remains the largest among the last ¢ elements, we insert

elements &k + 1 through n, one at a time, to the right of any but the last ¢ elements.

There are ( -4
n—1-1¢t)!
(k-—t)(k'l'l—t)'“(n—l—t)—(k—_l—_—tj-!'
ways to do this. Hence there are

576

permutations where the largest of the last ¢ elements equals %, and it is not alone in
the right cycle. Summing over all possible values of k gives us

[k 1] (n—1-1¢)
farr (k-1-9

permutations altogether.

Notice that when t = 1, Identity 188 simplifies to Identity 187.
For our final identity, we convert Identity 180 to Stirling numbers using Combinatorial
Theorem 11 and re-indexing (n:=n— 1, m:=m—1, and k :=t — 1.) This gives us

Identity 189 For1<m<n,

[ ] [m] (=1 +’§ (t—l)(m—l)!(n—m)!
(m-1)! " &= \m-1 (n—1t) )
Answer 2: We condition on whether numbers 1 through m all appear in the left

cycle, and if so, how many elements appear in the left cycle. First we claim that for
1< m < n, the number of permutations in 7;, that do not have elements 1,2,.

all in the left cycle is [7] -(1’;—1& For these permutations, the elements 1 through
m can be arranged into two cycles in [’f'] ways. Next insert the remaining elements
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m+1 through n, one at a time, to the right of any existing element. Hence there are
m(m+1)---(n—1) = (n—1)!/(m— 1)! ways to insert these elements. Altogether

there are
m] (n—1)!
=y
such permutations.
Next we show that

"2":‘ (t—l ) (m —1)!(n — m)!
= \m-1 (n—1t)
counts the number of permutations in 7;, where elements 1 through m are all in
the left cycle. To see this, we claim that for m < ¢t < n — 1, the summand counts
the permutations described above with exactly ¢ elements in the left cycle and n — ¢
elements in the right cycle. To create such a permutation, we first place the number
1 at the front of the left cycle. Now choose m — 1 of the remaxmng t —1 spots in the
left cycle to be assigned the elements {2,...,m}. There are ( ) ways to select
these m—1 spots and (m —1)! ways to arrange elements 2,...,m—1 in those spots.
For example, to guarantee that elements 1,2, 3,4 appear in the left cycle of Figure
7.3, we select three of the five open spots in which to arrange 2, 3,4. The insertion
of 5,6,7,8,9 remains.

Now there are (n—m)! ways to arrange elements m+-1 through 7 in the remaining
spots, but only n%_tth of them will put the smallest element of the right cycle at the

front of the right cycle. Hence, elements m +1 through n can be arranged in 5';;1:2
legal ways. Altogether there are

t—-1 (n—m)!
(m—l)(’"’l” o=

ways to satisfy our conditions, as desired.

An application of harmonic numbers arises in calculating the average number of cycles
in a permutation of n elements. Specifically,

Cartoon by Greg Levin.

Figure 7.3. In 75, a permutation with 1, 2, 3, 4 in a left cycle containing exactly six elements is cre-
ated by first selecting three of the five open spots, and then arranging 2, 3, 4 in them. Subsequently,
5,6, 7,8,9 will be arranged in the remaining spots.
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Theorem 12 On average, a permutation of n. elements has Hy, cycles.

There are n! permutations of » elements, among which [’,: of them have k cycles.
Consequently, Theorem 12 says

e klx
————Zk—;' L H,, (7.1)
or equivalently, by Combinatorial Theorem 11,

Sl =7]

k=1

Identity 190 For n > 1,

Set 1: The permutations of {1,...,n} with an arbitrary number of cycles, where
one of the cycles is distinguished in some way. For example (1284)(365)(79),
(1284)(365)(79), and (1284)(365)(79) are three different arrangements with k = 3.
Since a permutation with k cycles leads to k distinguished permutations, this set has
size equal to Y ¢, k[7)-

Set 2: The set of permutations of {0,1,...,n} with exactly two cycles. This set has
sze ["47].

Correspondence: We illustrate our one-to-one correspondence between these two
sets by the following three examples.

(1284)(365)(79) <=> (079365)(1284)
(1284)(365)(79) <= (0791284)(365)
(1284)(365)(79) <= (03651284)(79)

In general, we transform the permutation with n elements

(Ci)(Cre—1) - -+ (C541)(Ci)(Cj-1) -+~ (C2)(Ch)

into
(0C,Ca:+-Cj-1 Cj41-+-Ci Ck)(Cj).

The process is easily reversed. Given (0 @y -+ @n—;)(b1 - -bj) in Tn4, the right
cycle becomes the distinguished cycle (b; ---b;). The distinguished cycle is then
inserted among the cycles Cj.—1,...Ca, C;, which are generated one at a time as
follows: C) (the rightmost cycle) begins with a; followed by @ and so on until
we encounter a number a; that is less than a;. Assuming such an a; exists (i.e.,
a1 # 1), begin cycle C, with a; and repeat the procedure, starting a new cycle every
time we encounter a new smallest element. The resulting cycles (after inserting the
distinguished one in its proper place) will be an element of 7,, written in our standard
notation. Hence we have a one-to-one correspondence between the sets counted on
both sides of Identity 190.

By modifying this procedure, as in the exercises, other relationships can be derived as
well.
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7.5 Stirling Numbers of the Second Kind

It would not be fair to discuss Stirling numbers of the first kind without saying a few
words about their intimate companions, the Stirling numbers of the second kind.

Definition: For integers n,k, let {1} count the number of ways to partition a set

with 7 elements into & disjoint, nonempty subsets. {"} is called a Stirling number
of the second kind.

For example, { } = 7 counts the partitions of {1,2,3,4} into two subsets, namely:
(1H2,3,4} {L,2H3,4) {L3H2.4) {L4}2.3), (1,2,3H4} {L24H3),
(1,3,4){2).

Notice that the partition {1,3}{2,4} is the same as the partition {2,4}{3,1}. Hence
we adopt the following convention.

Set partition notation: For a partition of {1,...,n} into k disjoint subsets, each
subset is written in increasing order of its elements, and the subsets are listed in
increasing order of their smallest element.

The seven partitions of {1,2,3,4} into two subsets given previously are written using
this convention.
Just as with Stirling numbers of the first kind, {"} = 1 counts the partition

{1H2H3} -+ {n},

and {J} = 1, but otherwise {7} = 0. Likewise, we have {¥} = 0 whenever n < 0, or
k <0, or n < k. Some values of {7} can be computed straight from the definition. For
example, for n > 1, {3} =1 counts the partition {1,...,n} and {5} =27 -1, since
the right subset is a nonempty subset of {2,...,n}, and all the other elements appear
in the left subset with 1. Also, {,",} = (}) since a partition with n — 1 subsets is
determined by which two elements appear together in a subset.

As with binomial coefficients (Identity 127) and Stirling numbers of the first kind
(Identity 183), {} can be computed recursively.

Identity 191 Forn >k > 1,

n n—1 n—1
e
Question: How many partitions of an n-element set have exactly k subsets?

Answer 1: By definition, {}}.

Answer 2: Condition on whether element n is alone in its own subset or not. If n
is alone in its own subset, then the remaining n — 1 elements can be placed into
k — 1 subsets in {z 1} ways. If n is not to be alone, then we first arrange elements
1 through n— 1 into k subsets (there are {" 1} ways to do this), then insert element
n into any of the k subsets. This gives us k{" 1} total partitions where n is not
alone. Altogether, we have {7-1} + k{";'} partitions with & subsets.

Using this identity, we can easily compute Stirling numbers of the second kind. See
Table 7.2.



104 CHAPTER 7. HARMONIC AND STIRLING NUMBER IDENTITIES

n\k|]O01 2 3 4 5 67
0 [10 0 0 0 0 00
1 o1 0 0 0 0 00
2 lo1 1 0 0 0 00
3 |lo1 3 1 0 0 00
4 (01 7 6 1 0 00
5 0115 25 10 1 0 0
6 |0138 9% 6 15 10
7 |0 1 63 301 350 140 21 1

Table 7.2. Stirling numbers of the second kind {}}.

As with the other Stirling numbers, Stirling numbers of the second kind also have
an algebraic definition that can be explained by a combinatorial argument. For z,k > 0,
define the falling factorial function () to be the product of the k& consecutive integers
beginning with = and decreasing. Thus z(g) = 1, z1) = 2, Z(2) = z(z — 1), and in
general for k > 1,
Ty =x(z—1)(x—2) - (z—k+1).

Z(x) can also be thought of as a polynomial in z.

Identity 192 For n > 0,
n
n
"= Z {k}z(k).
k=0

Question: How many ways can n students be assigned to z different classrooms,
where some classrooms are allowed to be empty?

Answer 1: Since each student can be assigned one of z classrooms, there are z™
such assignments.

Answer 2: Condition on the number of occupied classrooms. For 0 < k < n, there
are {3} ways to partition the students into k nonempty subsets, followed by Z(k)
ways to assign each of these subsets to a classroom.

There is not a simple closed form for 3 ;_, {%}=*, but if we instead fix k and let n
vary, then we have the following generating function identity.

Identity 193 For k > 0, and for all  sufficiently small,

() zk
Z{k}w T (1-z)(1-22)(1-3z)--- (1 — kz)’

n>0

We know that the expression 1—1jm is equal to the geometric series 1 + jz + j2z2 +

7323 + - .- for all sufficiently small values of z. Hence the identity asserts that
{7} is the z™* coefficient of

(1+$+$2+$3+---)(1+2$+4$2+8$3+--')“°(1+kw+k2m2 +k3a:3+.--),
For instance when n = 20 and k = 3, {%'} is the coefficient of the z!7 term of

(A+z+z24+23+-- )1 1204 422+ 83 4 )1+ 3z +92% 4 272% + .-.),
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which is the sum of terms like (12°)(2828)(3%z*). What are numbers like 152834 count-
ing? We know that {230} counts the number of partitions of the set {1,2,...,20} into three
subsets {a1,az, ..., }{b,ba,...}{e1, ¢z, ..} where each set is written in increasing order
of its elements and 1 = a; < by < ¢;. We claim that the number of such partitions with
a1 =1,by =7,¢; = 16 is 152834 since elements 2 through 6 must be in the first subset,
elements 8 through 15 can be in the first or second subset, and elements 17 through 20 can
each be in the first or second or third subset. In general, the z*~* coefficient is the sum of
products of the form 112€2 ... k where e; +ea+- - -+€, = n—k which count partitions
whose minimum elements are a; = 1,b; = 2+e€;,61 = 3+e; +e,d; =4+e;+ex+e3,
and so on, up to the kth set with minimum element k+e; + e + -+ + ex_1 =n — ep.
Once the minimum elements are chosen, the numbers between 1 and b, are forced to
go into the first subset, the numbers between b; and ¢; have two choices, the numbers
between c; and d; have three choices, and so on.

We conclude this section by generalizing Identity 184, combinatorially proving that
Stirling numbers of the first and second kind are intimately connected.

Identity 194 For m,n > 0,

é [:] {:l}(—l)" = (—1)"8m,n, (72)

where 0p n, = 1 if m = n, and is 0 otherwise.

Set 1: Let £ be the set of arrangements of n distinct students around an even num-
ber of identical circular nonempty tables which are placed into m indistinguishable

nonempty classrooms. |€] = ;. even (1] {m}-

Set 2: Let O be the set of arrangements of n distinct students around an odd num-
ber of identical circular nonempty tables which are placed into m indistinguishable
nonempty classrooms. [O] = 3, oqq [F]{%}-

Correspondence: We establish a one-to-one correspondence between € and O except
for the case where m = n. When m = n there is only one way that n students can
ultimately be placed into n classrooms and that is for each classroom to contain
one table, and each table to contain one student at it. When n is even, || = 1
and |O] = 0; when n is odd || = 0 and |O] = 1, as predicted. Either way,
|€] — 10| = (-1)", as predicted.

‘When m > n, both € and O are empty. When m < n, every element of £ (or O)
must have a classroom with at least two students in it. Now for any element of £,
let a be the smallest numbered student who is not in a room by herself, and let b be
the next smallest numbered student in the same room. We adopt the convention of
placing each table in a given room with the smallest element listed first. If a and b are
not at the same table, then our room is a set of tables: {(a---), (b---),(c---),---}.
We transform this (by removing just two parentheses, but leaving everything else
listed in the same order) into {(a---b---),(c:--),-+-} where a and b are now at
the same table. This new allocation has one fewer table than the original one, and is
therefore in . Conversely, if a and b are at the same table, then we can undo this
transformation (by reinserting the parentheses) so that they are at different tables,
again creating an element of O.

In a similar fashion, it can also be proved that
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Identity 195 For m,n > 0,
i {:} ["’ ] (=1)* = (=1)"6m . (7.3)
k=0 m

We leave its proof as an exercise for the reader.

7.6 Notes

Some of the material in this chapter is based on [6], developed with undergraduate Greg
Preston. The proof of Identity 185 was first shown to us by Robert Beals [2]. Identities
198 through 210 are listed in [28] as useful Stirling number identities. The final exercise
was developed by undergraduates David Gaebler and Robert Gaebler. We thank Greg
Levin for the cartoons.

7.7 Exercises

1. Here is an alternative proof of Combinatorial Theorem 11, based on H, = H,—; +
%. Write H,, = 73 and prove that a,, = {";1} by showing that they satisfy the
same recurrence and initial conditions.

2. Modify the proof of Identity 190 to prove identities:

Identity 196 For m,n>0, Y p_. [» (,’;) = ;"_;11]

Identity 197 For m,n >0, ¥ i_. [1]2* = (n + 1)!

Find combinatorial proofs for the following identities.

Identity 198 For m,n>0, Y ¢_. (7) {f;} = ;’:_11 8

Identity 199 For m,n >0, Yo k{"}*} = {min+1),
Identity 200 For m,n >0, Y2 o(n+ k)[*1¥] = [+"+1).
Identity 201 For m,n >0, 3o { £} (m+1)"~* = {"*!

mi1S-
Identity 202 For m,n >0, Y p_,. [X]nl/k! = -

Identity 203 For L<m<n Yp_ [F{%} = (®)(n-1)!/(m-1)
Identity 204 For &,m,n > 0, Yoo (D {EH"5} = {2 H(™).
Mdentity 205 For m,n > 0, g () ][4 = L) (457).

Identity 206 For m,n>0. %0  {#H11TEY1( 1)k — ¢ 1™ (7).
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The following identities can be proved by finding almost one-to-one correspondences
between even sets and odd sets.

Identity 207 For 0 <m <n, ¥p_,. [MH]] {5} (=1)* = ni/m!

Xdentity 208 For 0 < m <n, Y. ({5} (-1)k = (-1)={~}.

Identity 209 For 0 S m<n, Y p_. [F11](5)(-1)* = (-1)™[2].

Identity 210 For m,n >0, 312, (F)k"(-1)F = (-1)™m!{}}.

Challenging Exercise Conway and Guy define the r-harmonic numbers as follows: Let
Hi=0forr<0orn<0, H3 =21 forn>1, and for r,n > 1, let

Note that H} is equal to the ordinary harmonic number H,,. Broder [16] defines the 7-
Stirling number [k] to be the number of permutations of n elements into k cycles where
elements 1 through = must all be in different cycles. Prove the following generalization

of Combinatorial Theorem 11.
n+7r

Hr 1‘+1

n






CHAPTER 8

Number Theory

In this chapter, we have collected identities from arithmetic, algebra and number theory.

8.1 Arithmetic Identities

What could be simpler than the sum of the first » numbers? You probably already know
this first identity. In fact, it’s a special case of Identity 135 in Chapter 5. You may recall
that

Y k= nnt1)
=1 2

Combinatorially, this can be rewritten and explained in two different ways. The subsequent
identities and their counting proofs hinge on the interpretation of 2t a5 ("}1), a
selection without repetition, or ((3)), a selection with repetition.

kz;k= (n-zi-l)

Question: How many ways can two different numbers be selected from the set
{0,1,...,n}?

Answer 1: By definition, (*3?).

Answer 2: Condition on the larger of the two elements selected. If the larger number

is k, the smaller element can be chosen from any of the & members in {0,1,2,...,
k — 1}. Hence the total number of selections is ) ;_, .

Identity 211 Forn >0,

The next identity uses the alternate interpretation of 2t as ((%)) allowing rep-
etition. Consequently, the question to be answered involves selecting elements from a

different set.
2 n
k=)
k=1

Identity 212 For n > 0,

109
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Question: How many ways can two numbers be selected from the set {1,...,n}
where repetition of elements is allowed.

Answer 1: By definition, ((3)).

Answer 2: Condition on the larger of the two elements selected. If the larger number
is k, the smaller element can be chosen from any of the k members in {1,2,...,k}.
Hence the number of selections is Y ;_; k.

The beautiful fact that the sum of the cubes of first » numbers is the square of the
sum of the first n numbers can likewise be demonstrated two different ways. In each case,
we find a one-to-one correspondence between sets S and 7~ where [S| = Y_p._; ¥3, and

7] = (Lt

Identity 213 For n > 0,

ik:; . (n"l' 1)2
k=1 2

Set 1: Let S denote the set of 4-tuples of integers from 0 to 7 whose last component
is strictly bigger than the others; that is,

S ={(h,%,5,k) | 0 < h,i,j <k <n}.
For 1 < k < n, there are k® ways to choose h,i,j given the last component .
Hence, |S| =3¢, k°.
Set 2: Let T denote the set of ordered pairs of two element subsets of {0,...,n}.
If we write the elements of our subsets in increasing order, 7" may be expressed as

T ={({z1, 22}, {23,24}) | 0< 21 <z2 <7, 0< 33 <74 <1}

2
Clearly |T] = ("31)".

Correspondence: To see that S and 7~ have the same size, we find a one-to-one
correspondence f : S — 7 between these sets. Specifically, let

({r,i},{5,k}) ifh<i,
f((hyi 3 k) = ({3, k} {i,h}) ifh>i,
({3, k}, {ik}) ifh=us

For example,
f((]') 2,3, 4)) . ({1,2}, {3’ 4})’

f((2, 1,3, 4)) = ({3’ 4}v {1’ 2})1 and
f((lv 1,2, 4)) = ({1’4}v {21 4})

Note that f is easily reversed since the cases where h < i, h > 4, and b = i
are mapped onto ordered pairs ({z1, 22}, {s,z4}) where z2 < z4, T2 > 74, and
T2 = T4, respectively.

A simpler correspondence arises when we allow repetition.
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2e-(G)

Set 1: This time, we let S denote the set of 4-tuples of integers from 1 to » whose
last component is greater than or equal to the others. Specifically,

Identity 214 For n > 0,

§={(h,4,5,k) | 1< hyi,j <k <n}.
For a giv:n value of k between 1 and 7 there are k3 ways to select k, 4, and j. Thus
|S| = Ek:l ks'
Set 2: Let 7 denote the set of ordered pairs of 2-element multisubsets of {1,2,...,n}.
Then

T= {({221,:!:2}, {ES’m‘i}) | 1<z1<22<n, 1<23<24< n},

and |T] = ((3))".

Correspondence: Here, our bijection g : S — 7 has just two cases:

o h,i}, (G, k if h <,
9((hi, 5, k) = { E%J k%, E h}—) 1}) ifh>i.

For example,

9((1,2,3,4)) = ({1,2},{3,4}),
9((2,1,3,4)) = ({3,4},{1,1}).

The first case maps onto those ({z1, %2}, {z3,24}) where zo < x4, and the second
case maps onto those where z2 > z4. Hence g is easily reversed.

Another combinatorial approach to this identity is utilized in [34] and [56] using the
set S from our first proof. By conditioning on the number of 4-tuples in S with 2,3 or 4
distinct elements, it follows that

Z ks n+l n+l)6 + (n+1)3|
k=1

which algebraically simplifies to
n?(n + 1)?
—
Our proofs of Identities 213 and 214 avoid the use of algebra and derive ("'2"1)2 in a

purely combinatorial way.
Another well-known identity is

n(n+1)(2n+1) 1(2n+2
Zkz 6 Z( 3 )

k=1
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By letting S = {(%,4,k)|0 < %,7 < k < n} and conditioning on the number of elements
in & with two or three distinct elements, we get

Zk2= (n+1) +2(n+1)
et 2 3

which algebraically simplifies to 221281 The pext jdentity shows how to avoid the
algebraic step above entirely. Another proof that “chooses™ instead of “multi-chooses” is

given in the exercises.
Z" 12 1 ( (2n>) .
= 4\\3

Set 1: Let S be the set of 3-tuples of integers from 1 to n whose last component is
greater than or equal to the others. That is,

Identity 215 Forn > 0,

8={(,j k)1 <i,j <k <n}.

So |8] =Y r_, K2
Set 2: Let 7 be the set of 3-element multisets of {1,2,...,2n}.

T= {{221,1132,33}'1 S8 22L23< 2n},

and |T] = ((%)) -

Correspondence: Here we provide a 1-to-4 correspondence between S and 7~ by
sending the element (%, 7, k) to four destinations in 7" If 7 < 7, then (%, 7, k) is mapped
to {2i,2j, 2k} and {2i—1,2j, 2k} and {2i—1,2j—1,2k} and {2i—1,2j—1, 2k—1}.
Whereas if § > j, then (i, 7, k) is mapped to {2j, 2i— 1,2k — 1} and {2j, 2 — 1, 2k}
and {27, 2i~2,2k—1} and {2j—1, 2i—2, 2k—1}. For example, (1,2, 3) is mapped
to {2,4,6}, {1,4,6}, {1,3,6}, {1,3,5}. Whereas (2,1,3) is mapped to {2,3,5},
{2,3,6}, {2,2,5}, {1,2,5}. The mapping is easily reversed by examining the parity
of each component of {z;,x2,3}. See Figure 8.1.

([ {2i, 24, 2k} eee
- . 2i—1 2j 2k} oee
< { ) )
Ifz_J then (z,J,k)_) < {22-_1, 2j_1) 2k} ooe
L {26-1, 2j-1, 2k-1} ooo
({25, 2-1, 2k—1} eoo
{24, 2 —1, 2k} eoe
{25, 2i-2, 2k-1} eeo
| {251, 20-2, 2k-1} oeo

If ¢ > j then (¢,5,k) — ¢

Figure 8.1. Every 3-tuple of integers from {1,2,...,n} whose maximum occurs in the last
component Jeads to 4 unique 3-element multisets of {1,2,...2n}.
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Another useful identity is the finite geometric series which states that for any (real or
complex) number z # 1 and any positive integer n,

1-z7

1-z

1+z+z?+23+.. +2" 1 =

We prove this for positive integers z in the following form.
Identity 216 For n > 1,

(z-1)A+z+z%+---+2" ) =2" -1

Question: How many sequences of n numbers can be created where each number
comes from the set {1,...,z}, but we exclude the sequence consisting of all zs.

Answer 1: 2™ — 1.

Answer 2: Condition on the location of the first term in the sequence that is not an
z. Suppose for 0 < k < n — 1, the first non-z occurs at the (n — k)th term. Then
there are (z — 1) choices for that term, and z* ways to finish the sequence, yielding

(z—1)z* such sequences. Consequently, there are (z—1) 37— z* such sequences.

Notice that both sides of Identity 216 are polynomials of degree . Both polynomials
agree on more than n+ 1 inputs (since they agree on all positive integers), therefore they

must be equal on all real or complex input values for x. The same is true for the next
identity.

Identity 217 Forn >0,

z (21;:)3:"_2" = % [(z+1)*+(z - 1)"].

k>0

Set 1: Let S be the set of all sequences of n numbers, each chosen from the set
{1,...,2 + 1}, where the number z + 1 appears an even number of times. The
number of sequences where z + 1 occurs 2k times is (;;)z"~2*, since we must first
choose which terms are = + 1 and the remaining n — 2k terms each have z choices.
Consequently, |S] = Y50 (55) 2" "

Set 2: Let R be the set of all sequences of » numbers, each chosen from the set
{1,...,z+1}, where all the numbers are painted red. Let B be the set of all sequences
of n numbers, each chosen from the set {1,...,z — 1}, where all the numbers are
painted blue. Here [RUB| = (z+ 1) + (z — 1)

Correspondence: We find a 1-to-2 correspondence between S and RUB. Let X € S.
Then we associate with X the elements X’ and X" in R UB where X’ is the same
as X painted red. Thus X’ is in R, and will contain an even number of z + 1's.
X" depends on whether or not the numbers  or z + 1 occur in X. If neither of
these number occur in X, then X” is the same as X painted blue. Here X" is in B.
Otherwise, X has at least one number equal to z or z + 1. Let X" be the same as
X painted red, but with the first occurrence of z or z + 1 replaced with the other
number. Hence X” is in R and will contain an odd number of z + 1s.
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The next identity is typically proved by telescoping sums

kk-1) "~ =n

But multiplying through by n! gives us a permutation identity which we will count using
the seating argument presented for Identity 182.

Identity 218 Forn > 1,

Zk(—,;'éT)-=n!—(n—1)!
k=2

Question: How many permutations of the numbers 1 through n consist of two or
more cycles?

Answer 1: Since there are (n — 1)! permutations with just one cycle, there are
n! — (n — 1)! such permutations.

Answer 2: Condition on the first element of the second cycle. For 2 < k < n,
how many permutations have the number k as the first element of the second cycle?
Using the cycle notation set on page 92, recall that the first cycle begins with 1 and
must also contain the numbers 2 through k — 1. Inserting elements one at a time,
the numbers 2 through k — 1 can be arranged (k — 2)! ways in the first cycle. The
number k is required to lead the second cycle. Now the number k+1 can be inserted
k + 1 places: to the right of any of the existing k elements or it may start a new
cycle. Likewise the number & + 2 can be inserted k + 2 places, and so on. Hence the
number of such permutations is (k — 2){(k +1)(k+2)---n = m%’_'_—l; Altogether,

there are
2“: n!
- k(k-1)

permutations with two or more cycles.

8.2 Algebra and Number Theory

Counting arguments can be profitably used in abstract algebra and number theory. Entire
books have been written on the subject (e.g., [24]). Here we merely give the flavor of
what can be done.

Theorem 13 If p is prime, then p divides () for 0 < k < p.

Proof 1. By Identity 130 of Chapter 5, k() = p(E_}) is a multiple of p. Since p is prime,
it has no common prime factors with k. Hence p must divide (). o

Our second proof of this theorem is more in the spirit of the proofs that follow.

Definition Let S be a set and g be a function from S to S. For z in S, define
the orbit of z to be the set {z, g(x), ¢ (z), g (z),...}. Here, (¥ () is the element
9(g(g(--- g(x)))), where the function g is applied & times. If there exists m > 1 for
which g™ (z) = z, then the orbit of z is {z,g(z),...,9™ 1(z)}. If g(z) = z, then z
is called a fixed point of g and has orbit {z}.
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Lemma 14 Let g be a function from S to S and let = be an element of S. Suppose for
some integer n > 1, ¢(™(x) = z and let m be the smallest positive integer for which
9™ (z) = x. Then m divides n.

Proof. Let n = gm + r where 0 < r < m. Then

z = g (z) = g"+7™)(2)
= glr+mtmi-tm) (z)
= g(7) (g™ (gt™(- .- g™ (z)--+)))
= g"(a),

and since 0 < r < m, we must have 7 = 0 by the minimality of m. Hence m divides n.
o

Corollary 15 Let S be a finite set and g be a function from S to S. Suppose n is an
integer such that g™ (z) = z for all = in S. Then the size of every orbit divides n.

Notice that under the conditions described in the corollary above, the orbits partition
S into disjoint subsets. Hence the size of S is the sum of the sizes of the orbits. When n
is prime, the situation is especially simple.

Corollary 16 Let S be a finite set and suppose there exists a prime number p for which
g (x) ==z for all = in S. Then every orbit either has size 1 or size p. Consequently, if
F is the set of all fixed points of g, then

|S] = |F] (mod p).

As our first application, we have

Proof 2 of Theorem 13. Let S be the set of k-element subsets of {1,...,p}. For X in S,
X = {x1,%2,...,%k}, define g(X) = {z1 + 1,22 +1,...,2x + 1}, where all sums are
reduced modulo p. Now since g?)(X) = X for all X, and S has no fixed points of g
(why?), then by Corollary 16, we have |S| = 0 (mod p). o

The next theorem is one of the most useful in number theory.

Theorem 17 (Fermat’s Little Theorem) If p is prime, then for any integer a, p divides
af —a.

Proof 1. The classical proof uses the Binomial Theorem (Identity 133), Theorem 13 and
proceeds by induction on a. If p divides aP—a (as it clearly does when @ = O or a = 1) then
it must divide (a+1)P —(a+1) since (a+1)? = Y0_o (})a* = 1+aP+ Y- (B)a* =
1+a? +0=a+1 (mod p). o

Proof 2. This proof is more combinatorial in spirit.
Question: How many ways can the numbers {1,...,p} each be assigned one of a

colors, where not all numbers are allowed to be assigned the same color.

Answer 1: There are @ — a such colorings since all e monochromatic colorings
must be removed from consideration.



116 CHAPTER 8. NUMBER THEORY

elements 1 2 3 4 5
original coloring B R R Y B
equivalentcoloring [ B B R R Y
equivalentcoloring [Y B B R R
equivalentcoloring | R 'Y B B R
equivalentcoloring | R R Y B B

Figure 8.2. If the numbers 1,2, 3,4, 5 are assigned the colors Blue, Red, Red, Yellow, aru Blue
respectively, equivalent colorings are obtained by cyclically shifting the assignment.

Answer 2: For each such coloring and for 0 < 7 < p, consider the equivalence class
of colorings obtained by shifting all the colors j positions to the right modulo p.
For example when p = 5, the coloring (Blue, Red, Red, Y ellow, Blue) generates
the class of colorings in Figure 8.2. By the second proof of Theorem 13, all of the
colorings in a class must be distinct. (For any utilized color, the subset of numbers
receiving that color must be different in each coloring.) Hence the set of colorings
can be partitioned into classes, all of which have size p. So the total number of
colorings is p times the number of equivalence classes.

Since p is a factor in Answer 2, it must also divide Answer 1. Hence p divides a? —a. ¢

Euler proved a more general identity. For a positive integer n, the totient function
¢(n) counts the number of integers in {1,...,n} that are relatively prime (i.e., have no
common prime factors) with n. Euler’s Theorem states that if a and n are relatively prime,
then

a®™ =1 (mod n).

Although we do not know of a combinatorial proof of this theorem, we would love to see
one! Nevertheless, we can prove other facts about ¢(n) combinatorially.

Theorem 18 If n = p*p5? - - - pit, where the p;s are distinct primes and all exponents
are positive integers, then

¢(n)=n(1—pl1) (1‘%)”'(1'%)‘

This theorem makes sense intuitively since among the » numbers 1,2,...,n, 1/pith
of them have p, as a prime factor. The n(1— ;}T) term is the size of the set after removing

all multiples of p;. Intuitively, one would expect that 1/p,th of these remaining numbers
should be divisible by p2, so after eliminating these, the remaining set should have size

(-2)(-2):

Continuing in this manner, the subset of these numbers not divisible by any of the prime

n(l——) (I_—.)--'(l——)

A more rigorous combinatorial proof uses the principle of inclusion-exclusion.
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Question: How many numbers in {1,...,n} are relatively prime to n?
Answer 1: By definition, ¢(n).

Answer 2: We use inclusion-exclusion here. From the set {1,...,n}, we first throw
away the n/p, multiples of p; and the n/p, multiples of P2,..., and the n/p,
multiples of p;. Then we add back the n/p; p; numbers that are divisible by ;1 and
P2, the n/p) p3 numbers that are divisible by p; and ps, and so on. Then we subtract
off the n/ppops numbers that are divisible by p1, p2, and p3, and so on. When the
dust settles, our subset of {1,...,n} with none of these prime factors has size

n n n n n
n— (—+—+—+---)+(—+——+---)
PPz P PPz Pip3

n n
_( +...)+...+(_1)t*
P1p2p3 np2:--pe

-2 -)-(-2)

We leave as an exercise to prove

which simplifies to

Corollary 19 If x and y are integers with no common prime factors, then d(zy)

¢(x)o(y).

The next identity sums ¢(d) over all positive divisors of n.

Identity 219 " ¢(d) =n.

din

12 nl9
ey, B}

Question: How many numbers are in the set {
Answer 1: Obviously, n.

Answer 2: Each such fraction can be put in lowest terms of the form § where d is
a divisor of n, and c is relatively prime to d. For each denominator d there are ¢(d)
relatively prime numerators. Altogether the number of fractions is 3_,, ¢(d).

Here is another fundamental theorem from number theory.
Identity 220 (Wilson’s Theorem) If p is prime, then
(p-1)=p-1 (mod p).

Question: How many permutations of {0,1,...,p — 1} have exactly one cycle?
Answer 1: (p —1)!

Answer 2: Let S be the set of permutations of {0,1,...,p — 1} with exactly
one cycle, and define the function g on S as follows. For any permutation 7 =
(0,a1,02,...,a65—1) in S, define g(7) = (1,a1 +1,a2+1,...,a,-1 +1), where all
sums are reduced modulo p. Clearly g(7) is in S (although it will not be in standard

form since it does not begin with 0) and g{P)(«) = 7. Thus by Corollary 16, |S| is
congruent mod p to the number of fixed points of g. It remains to show that S has

117
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precisely p— 1 fixed points of g, namely those “arithmetic progression” permutations
(0,a,2a,3a,...,(p — 1)a), where 1 < a < p—1 and all terms are reduced mod
p- Such permutations are fixed points of g (since adding one to each entry does not
spoil the arithmetic progression property). Conversely, if = = (0, a1,@2,...,0p-1)
is a fixed point of g, then

(O) a, 02,03, .. ’ap-l) == g(al)(ﬂ') = (als 20.1,02 +a1,...,0p-1+ al)-

On the left side, m(a;) = a2. On the right side, m(a;) = 2a;. So a2 = 2a;.
Continuing on the left side, 7(a2) = ag and on the right side (a2) = a2 +a; = 3a;.
So a3 = 3a;. In general ay = ka,. Hence g has p — 1 fixed points, as desired.

Lagrange’s Theorem may be the most important theorem concerning finite groups. It
states that if a group G with n elements has a subgroup H with d elements, then d must
be a divisor of n. The converse of this theorem is false. That is, if d divides n, there does
not necessarily exist a subgroup of G of size d. However, when d is prime, the converse
holds.

Theorem 20 If G is a group of order n and the prime p divides n, then G has a subgroup
of order p.

Proof. Suppose that G has n elements, where 7 is divisible by the prime p. Define
S= {(.‘1:1,:112, T ,mp)l:z:i € G,a:lmg Ty = e},
where e denotes the identity element of G.

Question: How many elements does S have?

Answer 1: There are nP~! elements in S since we can arbitrarily choose the terms
Z1,%2,...,Zp—1 (n choices each), which then forces z, = (2122 - :z:p_l)‘l.

Answer 2: Notice thatif s; = (23, 22,...,2p) € S, then we have 2223 - - - z, = :1;1'1
which implies Z223 - - - 2,7 = e. It follows that s, = (22,23, ... ,2p, 1) is also in
S. Continuing in this manner, s3 = (23, Z4, . . ., Zp, Z1, Z2), $4 = (Z4,Zs, . . . ' Zpy L1,
£2,%3)-++» Sp = (Tp,Z1,...,Zp—1) also belong to S. Since p is prime, the ele-
ments sy, S2,...,5p must be distinct unless z; = 25 = .-+ = zp. Consequently
|S] = [S1] + |S2| where S, is the set of elements of S of the form (z,z,...,z) and
S2 consists of all other elements of S. The size of S, is a multiple of p since its
elements can be partitioned into cyclic shifts of length p. Thus |S;| = nP~! — pk
where k is some integer. Since p divides n, we conclude that |S;| is a multiple of
p. Furthermore, the size of S; is nonzero since (e, e, ...,€) is a member. Thus G
has at least p — 1 nonidentity elements z for which z? = e. For any such z, the set
H = {e,z,2?%,...,2P"1} is a cyclic subgroup of G with p elements. o

8.3 GCDs Revisited

In Chapter 1, we proved that the greatest common divisor of the traditional Fibonacci
numbers (Fo =0, F} =1, F,, = F,_; + F,_,) satisfy the identity

g(:d(Fm Fm) == Fgcd(n,m)'

We show that this phenomenon remains true for other Lucas sequences of the first kind.
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Theorem 21 Let s,t be nonnegative relatively prime integers and consider the sequence
Uo=0,Uy =1, and for n > 2, U, = sUp—1 + tUp—a. Then

ged(Un,Up) = Ugcd(n,m)-
For convenience, we define for n > 0,
Up = Un+1)

which by Combinatorial Theorem 4 counts colored tilings of length n with s colors for
squares and ¢ colors for dominoes. Fortuitously, in Chapter 3 we already derived the
identities needed to prove the following lemma.

Lemma 22 For all m > 1, Uy, and tUy,—; are relatively prime.

Proof. First we claim that Up, is relatively prime to t. This is easy to see algebraically
since for all n > 1, U,, = sUp—) + tUp—2 = sUp_ymod . Thus by Euclid’s algorithm
discussed on page 11, ged(Uy,t) = ged(t,s™~1) = 1. For the combinatorial purist, we
can condition on the location of the last colored domino (if any exist). Identity 75 says
(after letting ¢ = s and re-indexing),

m—2
Un= sl Z Sj_lUm_l_j.
o

Consequently, if d > 1 is a divisor of U,, and ¢, then d must also divide s -1 which is
impossible since s and t are relatively prime.

Next we claim that U,,, and U,,—; are relatively prime. This follows from Identity 87
since if d > 1 divides U,, and U,,—;, then d must divide #*~! But this is impossible
since U,,, and ¢ are relatively prime.

Thus since ged(Upn,t) = 1 and ged(Upn, Upn—1) = 1, then ged(Up, tUm—1) = 1, as
desired. 0

To prove Theorem 21, we will need one more identity, inspired by Euclid’s algorithm
for computing greatest common divisors. The next identity may look formidable at first,
but it makes sense when viewed combinatorially.

Identity 221 If n = gm + 7, where 0 < r <'m, then

q

Un = (tUm-1)"Ur + Un, Z(tUm—l)j “Wig=i)ymir+1-

i=1

Question: How many colored (gm + r — 1)-tilings exist?

Answer 1: ugmir—1 = Ugpmtr = Un.

Answer 2: First we count all such colored tilings that are unbreakable at every cell
of the form jm — 1, where 1 < j < ¢. Such a tiling must have a colored domino
starting on cell m — 1,2m —1,...,gm — 1; these dominoes can be chosen 7 ways.
Before each of these dominoes is an arbitrary (m — 2)-tiling that can each be chosen
Um—2 Ways. Finally, cells gm + 1,...,qm + r — 1 can be tiled u,_; ways. See
Figure 8.3. Consequently, the number of colored tilings with no jm — 1 breaks is
tq(um—Z)qur—l . (ter - l)qlrr-
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m-l 2m-1 3m-1 gm-1 gntrl
| 75
I M

U2 Uy U2

Figure 8.3. There are (tUm-1)?U; colored (gm + r — 1)-tilings with no breaks at any cells of
the form jm — 1 where 1 < j <gq.

u

Yy, ma2 Uy

m.z )

Next, we partition the remaining colored tilings according to the first breakable
cell of the form jm — 1, 1 < j < ¢. By similar reasoning as before, this can be
done (tUm—1)""1UnU(g—j)m+r+1 Ways. See Figure 8.4. Altogether, the number of
colored tilings is (tUm—1)TUyr + Un 33— (tUm—1) " Ugmj)mir1-

m-1 (j-1)m-1 131_-]1- qm'-!_-lr-l
[ | =
Up.2 ses  Uys U1 Ug-j)mr

Figure 8.4. There are (tUm—1)" "2 UmU{gjym+r+1 colored (gm-r—1)-tilings that are breakable
at cell jm — 1, but not at cells of the form 4m — 1 where 1 < i < j.

The previous identity explicitly shows that U, is an integer combination of U,, and
U,.. Consequently, d is a common divisor of U,, and Uy, if and only if d divides U,,, and
(tUpn—1)U,. But by Lemma 22, since U,, is relatively prime to tU,,—;, d must be a
common divisor of Uy, and U,.. Thus U,, and U,, have the same common divisors (and
hence the same ged) as U,,, and U,.. In other words,

Corollary 23 If n =gm +r, where 0 < r <'m, then
ng(Um Um) = ng(Um, Ur)-

But wait!! This corollary is the same as Euclid’s algorithm, with Us inserted every-
where. This proves Theorem 21 by following the same steps as Euclid’s algorithm. The
gcd(Un, Ur) will eventually reduce to ged(Uy, Up) = (Ug,0) = U, where g is the
greatest common divisor of m and n.

8.4 Lucas’ Theorem

In Section 5.5, we found an ingenious method for determining the parity of (%) and proved
that for a fixed n, the number of odd values of (;f) is 2 raised to the number of ones in the
binary expansion of n. For instance, 82 = 64 + 16 + 2 = (1010010); so there are 23 odd
values of (8,3) Here we present another proof of this fact and the amazing generalization
modulo an arbitrary prime due to Edouard Lucas of Lucas number fame.

We begin with the following generalization of Theorem 13 to prime powers.

Theorem 24 Let p be prime. For any a > 1 and any 0 < k < p%,

(p:) =0 (mod p).
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Proof. Again by Identity 130 of Chapter 5, we know that

pa . pa -1
{(5) = (o)
Since 0 < k¢.< p%, the largest power of p that divides k is at most p*—1. Consequently,
p divides (%). o
Recall that polynomials with integer coefficients

f(z)= Z a,z" and g(z)= Z bnz™

n>0 n>0

are congruent modulo p if their coefficients are congruent term by term. Specifically,
f(z) = g(z) (mod p) if for all n > 0, a, = b, (mod p). For example,

zt + 423 + 622 + 4z + 1=2% +1 (mod 2).

The next lemma is sometimes facetiously referred to as the “freshman’s binomial
theorem.”

Lemma 25 For p prime and & 2 0,
(1+z)* =142 (mod p).

Proof. As in the proof of Theorem 17, the (legitimate) binomial theorem and modular
arithmetic give
s .
A+af =) (p )a:" =1+4+2z" (mod p),
k=0 k
since all terms vanish modulo p except when k = 0 and k = p®. o

To find the parity of (8,‘2), write 82 = 64 + 16 + 2 and apply Lemma 25 with p = 2.

i (8:) z* = (1 +2)2

k=0
=(1+z)%1+ z)'%(1 + z)°
= (1 + z%)(1 + =) (1 + 2?) (mod- 2)
= 1422+ 26 + 218 + 250 4 2% 4 280 4 282 (mod 2).

Thus (3?) has the same parity as the coefficient of z* in the last expression. For instance,
%) = 1 (mod 2) is odd, whereas (33) = 0 (mod 2) is even. Values of (%) for

which (%) is odd are precisely those k that can be expressed as 64a + 16b + 2c where
a,b, ¢ € {0,1}. Hence there are 23 = 8 odd values of (3). Generalizing this example, if
the binary expansion of n is ZZ':O b;2¢ where b; = 0 or 1, then the number of odd values
of (}) is

H(l + bi) — gnumber of 1s in the binary expansion n.

i=0

We are now ready to state and prove Lucas’ Theorem.
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Theorem 26 (Lucas’ Theorem) For any prime p, we can determine (};) (mod p) fronf
the base p expansions of n and k. Specifically, if n = E:=o bip* and k = Z::=o cipt

where 0 < b;,c; < p, then
n (b
(k) = H (c:) (mod p).

=0

Consider the situation where n = 97, k = 35, and p =5,
97=3-52+4-5+2=(342)s,

35=1-52+2-5+0=(120)s.

Consequently, Lucas’ Theorem implies

(6= () G) 0) =202 s

Whereas, since 38 = (1 2 3)s,

()= () ) &) = (=)

Lucas’ Theorem implies that when n = Y _obip® and k = 3¢ o cip’, () is a
multiple of p if and only if ¢; > b; for some 0 < i < t. Thus for (}) to avoid being a
multiple of p, we must have for each i, ¢; € {0,1,...,b;}. Consequently, (Z) is not a
multiple of p for exactly [T;_q(1 + b;) values of k.

We illustrate the proof of Lucas’ Theorem with an example. When n = 97 and p =5,
we determine (%) (mod 5) as follows. By the binomial theorem, (/) is the z* coefficient

of (1+ )%. Lemma 25 with p = 5 gives

(1+2)% =(1+2)*B1+2)*51 +)*?
= (L+2)%(1 + 2)®(1 +2)®(1 + 2)°(1 +z)°
x(1+z)°(1 +2)°(1 +z)(1 + z)
= (1+25)(1 + 25)(1 + 25)(1 + 2°)(1 + 2°)
X(L +2°)(1+2°)(1 +z')(1 +=') (mod p).

Hence (%) will be congruent to the z* coefficient of the last expression modulo 5. For
instance, the z3° term in the last expression is the number of ways we can reach a total of
35 cents with three distinct quarters, four distinct nickels, and two distinct pennies at our
disposal. Since a total of 35 cents requires exactly one 25-cent coin, two 5-cent coins and
zero 1-cent coins, there are (3) (3) (2) coin combinations. Thus (55) = (3) (3) (2) (mod 5),
as desired. By the same reasoning, there are no ways to achieve 38 cents using these coins
since there are not enough pennies. Consequently, we have (35) = 0 (mod 5).

Another strategy to prove Lucas’ Theorem that generalizes the approach taken in
Theorem 26 is outlined in the exercises.
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8.5 Notes

The second proof of Fermat's Little Theorem is attributed to J. Peterson in Dickson’s
History of the Theory of Numbers [23). The partial converse to Lagrange’s Theorem is
due to Cauchy; the combinatorial proof we provide is due to McKay [35].

We have only scratched the surface of combinatorial congruences. For further infor-
mation see Chapter 1 of Stanley [51] and papers by Rota and Sagan [47], Gessel [26],
Sagan [49], and Smith [50]. See also Erdts and Graham [24] and the survey article by
Pomerance and Sarkozy [42).

8.6 Exercises

Prove each of the identities and theorems below by a direct combinatorial argument.
Identity 222 For n >0, Y5, k* = ("37) + 14("F7) +36("F) +24("FY).

Identity 223 Forn > 1, Y poy k2 = 1(30).

Identity 224 For0<r,s <1landn >0, (3',:1:) =(}) (7) (mod 2).

To prove Identity 224, count palindromic binary strings depending on the length of the
string and the parity of the number of 1s as indicated in the four cases below.

L. (38) = (§) (mod 2).
2. (&) = (R) (mod 2).

3. (*241) = (}) (mod 2).

4. (,2,) =0 (mod 2).
Identity 225 For n,k > 0 and p prime, (5;) = (%) (mod p).
Identity 226 For 0 <k <n,0< s <, and p prime, ';ZI:) (R () (mod p).
Deduce Lucas’ Theorem from Identities 225 and 226.
Identity 227 For 0 < k < n and p prime, (5) = (%) (mod p?).
Identity 228 For p prime, the pth Lucas number satisfies

=1 (mod p).

Identity 229 For p prime, L, = 3 (mod p).

Identity 230 For distinct primes p and q, Lpq =1+ (Lg —1)g (mod p).
Theorem 27 If m divides n, then Uy, divides U,.

Theorem 28 L., divides Fom.

Theorem 29 L., divides Lst41)m-
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Uncounted Identities

The identities listed below are in need of combinatorial proof.

1. For p prime, (5) = () (mod p®).

2. If m,n are odd integers, with ged(m, n) = g, then ged(Lm, Ls) = L.

More generally, suppose m = 2%m’ and n = 2%/, and ged(m, n) = g, with m', n’
odd and a,b > 0. Prove

L, ifa=b,
if a # band 3g,

3. ged(L,, Ly,) =
otherwise.

if a < b and 3|g,

2
1
Ly, ifa>b,
2
1 otherwise.

4. ged(F, Ly) = {



CHAPTER 9

Advanced Fibonacci & Lucas
Identities

9.1 More Fibonacci and Lucas Identities

We end this book as we began it, by exploring more Fibonacci and Lucas identities (Lucas
might say that we’ve come “full circle”!) We include some of the proofs that we found
particularly challenging. As a climax, we add a dose of probability to obtain combinatorial
proofs of the Binet formulas

Fa= s !(1+2¢5)“_ (l__z_\/g)]

. (1+2\/5) N (1—2\/5)

We conclude with some known identities that, as far as we know, have not yet succumbed
to combinatorial interpretation.

Recall by Combinatorial Theorem 1 that f,, is the number of square and domino tilings
of a length n board. The first identity is a warm-up to remind us how these Fibonacci
tilings function.

Identity 231 For n,m > 2,

Fofm — fn—2.fm—2 = fn+m-—1-

Set 1: The set of ordered pairs (A, B), where A is an n-tiling, B is an m-tiling and
either A or B must end with a square. Discarding the tiling pairs where both end in
a domino gives us fp, frn — frn—2fm—2 such tilings.

Set 2: The set of (n +m — 1)-tilings. This set has size fpym-1.

Correspondence: We consider two cases, as illustrated in Figure 9.1. If A ends with
a square, then we append B to A after removing the last square of A. This creates
an (n +m — 1)-tiling that is breakable at cell » — 1. Otherwise, A must end with a
domino and B must end with a square. Here we append B to A with the last square
of B removed. This creates an (n + m — 1)-tiling that is unbreakable at cell n — 1.

125
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A ends in a square:

Figure 9.1. An n-tiling, m-tiling pair where at least one tiling ends with a square corresponds to
a single (n + m — 1)-tiling.

The next identity is more complicated, but follows a similar logic.

Identity 232
S L+ 2= f3 = fanr

Set 1: The set of ordered triples (4, B, C), where A, B, and C are (n— 1)-tilings or
A, B, and C are n-tilings with at least one ending with a square. Discarding the triples
of n-tilings that all end in a domino shows that this set has size f3_; + f3 — f3_,.

Set 2: The set of (3n — 1)-tilings. There are f3,—1 such tilings.

Correspondence: This time we need four cases, as illustrated in Figure 9.2. For the
first three cases, we assume that (A4, B, C) is a triple of n-tilings. If A ends in a
square, then we append B then C to A after removing the last square of A. This
creates a (3n — 1)-tiling that is breakable at cells » — 1 and 2n — 1. If A ends in a
domino and B ends in a square, then we append B then C to A after removing the
last square of B. This creates a (3n — 1)-tiling that is unbreakable at cell n— 1 and
breakable at cell 2n — 1. If A and B end with a domino and C' ends with a square,
then we do the same thing as before, but remove the last square of C. This creates
a (3n — 1)-tiling that is unbreakable at cells » — 1 and 2n — 1. For the fourth case,
where (A, B, C) is a triple of (n — 1)-tilings, we need to generate (3n — 1)-tilings
that are breakable at cell n — 1 and unbreakable at cell (2n — 1). We do this by
appending B then C to A with an extra domino inserted between B and C.

As a warmup for the more difficult identity that follows, we first present this simpler
one to illustrate the main idea.

Identity 233
PHoff+ 2+ + i) = fonsr.

Question: How many ways can a (2n+1)-board be tiled using squares and dominoes?
Answer 1: fony).

Answer 2: Condition on the location of the “middlest” square, i.e., the square that
is closest to the center of the tiling at cell n 4 1. Since 2n + 1 is odd, at least one
middlest square must exist. In fact, the middlest square is unique since if we have
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A ends in a square
4 T W S =
Y P
;  2nalTE Tz
breakable at n-1 breakable at 2n-1

A ends in a domino and B ends in a square

5]
o
HH
|
L

]

unbreakable at n-1 T brcakalc at 2n-1

A and B end in dominoes and C ends in a square

(e - B4 H E B g n]
\ ¥
— W = =
unbreakable at »- unhscakable at 2n-1

A, B, and C are (n—1)-tilings

4: m A B w

breakable at n-1 unbreakable a 2n-

y7E8N

1
Figure 9.2. A triple-tiling identity for i+ 2= 13 5= fan.

squares at cells n+1—k and n+1+k for k > 1, then a closer square would have
to exist among the 2k — 1 cells between them. There are f2 tilings with the middlest
square at cell n + 1. See Figure 9.3. For the middlest square to occur at cell j for
1 < j <, cells j + 1 through 2n + 2 — j must be covered with dominoes. The
remaining cells can be tiled f2_; ways. Similarly, for 1 < j < 7, there are f7_,
tilings with middlest square on cell 2n+2—j. Altogether, we have f2+23°%_, 7,
tilings.

Middlest square at 7+1
e 2
3 i Jy T
n+l 2n+1

Middlest square at cell jfor 1 <j<n

r D - £

— S at®

n-j+1 dominoes
Middlest square at cell 2n+2-2jfor1 <j<n

-

n-j+1 dominoes

Figure 9.3. Conditioning on the “middlest” square to show that f2 4+ 2(f2+ f24---+f2.)) =
fon41.
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Identity 234
573 + 3 +++ + fzn—z] = fan—1+2n.

Set 1: Let S denote the set of tiling pairs (A, B) where A and B both have length
2 for some 0 < j < n— 1. Clearly |S] = Y77, £2;.
Set 2: Let 7 denote the set of (4n — 1)-tilings. |7 = fan—1-

Correspondence: We create an almost 1-to-5 correspondence between S and 7.
Specifically, for a tiling pair (4, B) of S except those consisting entirely of j domi-
noes for 0 < § < n — 1, we identify five tilings of 7. In the n exceptional cases,
we identify only three tilings of 7~ which accounts for the discrepancy of 2n. Our
correspondence will be reversible according to the “middlest square” defined in the
previous proof.

For every tiling pair (A4, B) in S, we first generate tilings 71,72, and T3 in T
by inserting a square s and a sequence of k dominoes, d¥, as described below and
indicated in Figure 9.4. T} = Asd*»~%-1B, i.., T} is the tiling that begins with A
followed by a single square followed by 2n — 2j — 1 dominoes followed by tiling
B. The “middle section™ of T3 consists of the middlest square followed by an odd
number of dominoes. Using the same notation, T = Ad?*~%~1sB whose middle
section has an odd number of dominoes and ends with the middlest square. We pause
to note that T; and 75 are all of the tilings of 7 with an odd number of dominoes in
the middle section (or equivalently, an even number of cells in the “left section” and
“right section). Next T3 = sAsd?"~%~2sB whose middle section consists of the
middlest square followed by an even number of dominoes and whose left and right
sections (which necessarily have the same odd length) both begin with squares.

Tilings T4 and T are created by tiling pairs (A, B) from S that are not all domi-
noes. From the tail swapping technique of Chapter 1 introduced on page 7, we know
that if A and B are both (2;)-tilings for some j > 1, (not consisting of all dominoes)
then we can associate the tiling pair (A’, B') where A’ is a (2§ — 1)-tiling and B’ is
a (2j +1)-tiling. Define Ty = dA’sd?*"~2%~2B’, where the left section begins with a
domino, and the middle section consists of the middlest square followed by an even

Create three (4n- 1) tilings from every pair of 2j-tilings (4, B)

2n -2j?fdominow 4n-1

Figure 94. Titings 1. T>. T5.
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A 2n-2j-ﬁ:>minoes B 4n-1

Figure 9.5. Tiling T4 can only be created in pairs (A,B) containing at least one square.

number of dominoes. See Figure 9.5. It remains to construct those (4n — 1)-tilings
of the following two forms:

— left section begins with a square, middlest section begins with the middlest
square, followed by an even number of dominoes, and the right section begins
with a domino,

and

— middle section ends with the middlest square, preceded by an even number
of dominoes.

T, illustrated in Figure 9.6, will be of one of these two types, depending on
whether B begins with a square or domino. Specifically, if B begins with a square,
so that B = sB*, then Ty = sAsd?*~2/-2¢dB*. Notice that both the left section sA
and the right section dB* of Ts both have 2 + 1 cells, an odd number. If B begins
with a domino, so that B = dB**, then since A and B are not all dominoes, we
can tail swap A with B** to create A’ and B’ which are both 2j — 1 tilings. Thus
Ty = A'd?>™2%sB' has the desired form.

If B begins with a square:

s ——
2n-2j-2 dominoes 4n-1
If B begins with a domino:
4 §  Tail swap
1 2 3l >

A’ 2n-2j dominoes an-1

Figure 9.6. Tiling T can only be created in pairs (A, B) containing at least one square. The
resulting (4n — 1)-tiling depends on whether B begins with a square or a domino.
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9.2 Colorful Identities.

The combinatorial proofs of the identities in this section may be the most challenging
ones in the book. For these identities we will need a combinatorial interpretation of 2™ f;,.
There are 2" f,, ways to mark some of the cells of an n-board with an “X”, then tile the
board with “transparent” squares or dominoes. Looking through the tiles, we see that we
have two types of squares, which we call black or white, and four types of dominoes,
which we call red, yellow, green, or violet. See Figure 9.7.

X Bewnid]
white  black red yellow green violet

Figure 9.7. The six colored tiles that arise from marking some of the cells of an n-board with an
X and then tiling the board with transparent squares and dominoes.

Identity 235 7 (7)5L3) = 2°f,,.

Question: In how many ways can we tile an n-board with two types of colored
squares and four types of colored dominoes?

Answer 1: By the previous paragraph, there are 2™ f,, such tilings.

Answer 2: For every t-element subset of {1,2,...,n}, we generate 5.2 different
colored tilings in the manner described below.

Let ) < a2 < -+ < a; be a subset of {1,2,...,n}, and suppose that ¢
is even. This gives rise to /2 disjoint intervals Iy = [ay,a,), I = [a3,a4),...,
L2 = [a1-1,04]. Any cell not belonging to one of these intervals is covered by
a white square. Inside an interval, we have five tiling choices. We may cover the
interval entirely with squares where the end points must be black and the interior, if
it exists, must be white. Otherwise, we may cover the interval entirely with dominoes
of the same color (when the interval has an even number of cells) or we may cover
the interval with dominoes of the same color followed by a black square (when the
interval has an odd number of cells.) See Figure 9.8.

When £ is odd, we create intervals I) = [ag,a3], I = [a3,a4),..., Ipyy)2 =
[at—1,a] that obey the same coloring rules as before. All cells outside these intervals
are covered by a white square, except for cell a; which is covered by a black square.
Since every interval allows five choices, the subset {ay,...,a:} gives us 5.2} ways
to create a colored tiling.

But not so fast. The coloring rules, as stated, have two deficiencies, which con-
veniently complement each other. The first problem is that a string of two or more
dominoes of the same color can be generated by more than one subset. For ex-
ample, the coloring in Figure 9.8 could also have been generated by the subset
{3,6,8,9,10,11,12,14,15, 16, 18,19}. The other problem is that the coloring rules

x, X2 XS

H HE EES

1 23 456 7 8 9101112

Figure 9.8. A colorcd tiling based on S = {3,6.8.11.12,14, 15, 16, 18, 19}.
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red red .

1 23 45678 910
Figure 9.9. Another colored tiling.

provide no means of generating a colored tiling such as the one in Figure 9.9. We
remedy these problems in one fell swoop by amending our coloring rules as follows.
When an interval of even length I; = [a,b] is tiled by colored dominoes and I;
immediately precedes interval I, = [c,d], i.e., ¢ = b+ 1, then I;4; can not be
given the same color as I;. Instead, we allow I, to be covered by white squares
ending with a single black square. Now the tiling in Figure 9.9 can only be obtained
by the subset {1, 4, 5,9}. Notice the amended rule still allows five choices for each
interval, and that every subset {a1,...,a;} leads to exactly 5L5] distinct n-tilings.

It is a little trickier to prove that every colored n-tiling is represented by exactly
one subset S of {1,2,...,n}. Notice that if a tiling has no dominoes, then S is sim-
ply the set of cells covered by black squares. Otherwise, we can uniquely determine
S by working backwards from the last domino and counting the number of black
squares to the right of it. For more details, see [9]. For a different construction that
generalizes to Lucas sequences of the first kind, see [48].

The same reasoning can be applied to the following Lucas identities. There are 2™L,,
ways to create a colored bracelet with the same types of tiles. As previously assumed, there
are Lo = 2 colored bracelets of size 0, one that is in-phase and the other out-of-phase.

n

Identity 236 2"*1f, =Y 2*L;.
k=0

Set 1: The set of colored n-tilings. This set has size 2™ f,,.
Set 2: The set of colored bracelets of size at most 7. This set has size Y5, 2% L.

Correspondence: We establish a 1-to-2 correspondence between Set 1 and Set 2.
Let T be a colored tiling of an n-board. If T does not consist of all white squares,
let k denote the last cell covered by a nonwhite tile (1 < k < n). After removing
cells k + 1 through n, we generate two k-bracelets as illustrated in Figure 9.10:

B; An in-phase k-bracelet (ending with a nonwhite tile) obtained by gluing cells
k and 1 together.

By If cell k is covered by a black square, then B; is the in-phase k-bracelet
obtained by replacing the kth cell of B; with a white square.
If cell k is covered by a colored domino, then Bj is the out-of-phase k-bracelet
obtained by rotating the tiles of By clockwise one cell.

Every colored k-bracelet, where 1 < k < n, is obtained exactly once in this fashion.
The case where T consists of all white squares is identified with the two empty
bracelets. Thus .
2.2 f =) 2%Ly.
k=0
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Cell k covered by black square: Cell k covered by colored domino:

it

Figure 9.10. To prove that 2"+ f, = 3°7_, 2*L;, we draw a 1-to-2 correspondence depending
on cell k, the last cell covered by a nonwhite tile.

12)
2 N\t _on
Identity 237 2tz=; (2 t)s =2"Ly,.
Question: How many colored n-bracelets exist?
Answer 1: By definition, there are 2" L,, such bracelets.

Answer 2: For each even subset {1, Z2, ..., %2} of {1,2,...,n}, we shall generate
2 - 5¢ colored n-bracelets. As in the proof of Identity 235, create the intervals Iy =
[€1,22), I = [x3,24),.- -, I = [Z2¢-1,%2¢). Then generate 5° colored tilings of
an n-board by following the coloring rules described there. Folding the n-board to
become an n-bracelet, these colored tilings become in-phase bracelets with an even
number of black squares (possibly zero) before the first domino. We call such a
bracelet simple.

By the argument in Identity 235, all simple bracelets are generated by our coloring
rules as 2t varies from 0 to n. To complete the identity we argue that simple bracelets
account for exactly half of all possible colored bracelets. To see this, we draw a one-
to-one correspondence between simple bracelets and the rest by conditioning on cell
1 of a simple bracelet. See Figure 9.11.

a If the first tile is a square, then change the color of the square covering cell 1
(producing an in-phase bracelet with an odd number of blacks before the first
color).

b If the first tile is a domino, then rotate the simple bracelet counterclockwise one
cell to produce a colored bracelet that is out-of-phase and therefore non-simple.

Thus there are as many simple colored bracelets as non-simple ones. Hence the total
number of colored bracelets is

t
)e

2%(

t-0

n
o
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Simple bracelets: Not simple bracelets:

of black

squares before
first domino

Figure 9.11. A 1-to-1 correspondence between simple bracelets (in-phase bracelets with an even
number of black squares before the first domino) and not simple ones.

The combinatorial proofs given for the next two identities were discovered by David
Gaebler and Robert Gaebler while they were undergraduates at Harvey Mudd College.
Although they are special cases of Identity 11, we believe that the colored tiling corre-
spondence is sufficiently novel to present here. We continue to color a square with one
of two possible choices and color dominoes with one of four possible choices. But for
ease of exposition, the domino colors will be either all black, all white, black-white, or
white-black.

n
Identity 238 Forn>1, fap—1= E (:) Zkfk_l.
k=1

Set 1: The set of (3n — 1)-tilings. This set has size f3,,—;.

Set 2: The set of pairs (X, B) where X is a nonempty subset of {1,...,n}, and
B is a colored j-tiling that begins with a square, where j = |X|. Conditioning on
j» we have (;') ways to choose X, f;_1 j-tilings that begin with a square, and 27

ways to color each cell. There are 37, (7)27 f;-1 such tilings.

Correspondence: Let A be a (3n —1)-tiling. We first insert a square tile to the right
of cell 3k— 1 where k € {1,...,n} is the smallest number for which A is breakable
at cell 3k — 1. Call this new (3n)-tiling A’. See Figure 9.12.

EEEEE |
H E EFTEE

Figure 9.12. A (3n—1)-tiling becomes a (3n)-tiling by inserting a square at the first opportunity
after a cell of the form 3k — 1.
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Three cell segments Three cell segments

—> |
—>| —> o |
ud - -

== delete == delete

Figure 9.13. Every size 3 segment is transformed into a colored square or colored half-domino or
is deleted.

By definition of k, A’ begins with exactly & — 1 “square-domino” pairs, and has
a new square inserted at cell 3k. (Cells 3k — 1 and 3k — 2 are either covered by a
domino or two squares.) Next divide A’ into n “segments” 51,52, *,Sa of three
cells each. This division will require true cutting as some segments could begin or
end with a “half-domino”. Now we convert it to a j-tiling for some 1 < j < n
in 2-steps. For each of these segments, we transform it into a colored square or a
colored half-domino or we delete it according to the transformation given in Figure
9.13.

Call the resulting configuration B, illustrated in Figure 9.14. B’ is a collection
of colored squares and half-dominoes occupying an n-board, but not all cells need
to be covered. Finally we create B by “consolidating” B’, removing all of the empty
space. B will be a j-tiling where j is the number of segments that were not deleted.
Let X denote the set of numbers ¢ such that segment s; was not deleted. Notice
that our transformation always produces a legitimate colored tiling since every “left
half-domino” is always completed with a “right half-domino.” Also notice that by
definition of k, segments s,...,Sr—1 Will be deleted since they are all of the form
“square-domino”, and segment s;, will be converted to a white square or black square.
Thus B is guaranteed to begin with a square.

This procedure is easy to reverse. Given a colored j-tiling B that begins with
a square, and a j-subset X = {z;,%>...,z;}, we expand each square and half-

Figure 9.14. We convert a (3n)-tiling to a colored j-tiling by transforming each segment according
to the rules of Figure 9.13. The size j subset X is the set of j undeleted segments.
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domino into a length 3 segment by reversing the transformation of Figure 9.13. Then
we create B’ by placing these segments on a (3n)-board according to the instructions
provided by X: For 1 < i < j, the ith segment occupies cells 3i — 2,3 — 1, and 3:.
The unoccupied cells of B', in groups of three, are covered with either a “square-
domino” or a “half-domino-square-half-domino”, according to whether the empty
interval is to be closed at both ends or open at both ends. Removing the colors gives
us the (3n)-tiling A’. Since B began with a colored square, the tile on cell 3z; of

A’ is guaranteed to be a square. Removing that square produces the original tiling
A

The next identity generalizes the previous one to Gibonacci numbers, discussed in
Chapter 2. The proof is similar but with one little “twist”

n
Identity 239 Gin =) (;‘) 2G;.

J=0

Set 1: The set of phased (3n)-tilings, where an initial domino has Gg phases and an
initial square has G phases. From Chapter 2, we know that this set has size G3n-

Set 2: The set of pairs (X, B) where X is a (possibly empty) subset of {1,...,n},
and B is a phased, colored j-tiling, where j = |X|. Here every cell, including the
initial one, is assigned a color. Conditioning on j, we have (;‘) ways to choose X, G;

phased j-tilings, and 2/ ways to color each cell. So this set has size 3°7_, (’;)2-‘5 Gj.

Correspondence: Let A be a phased (3n)-tiling. This time we locate the last break-
able cell of the form 3k — 2. If no such cell exists, then A must be of the form
“domino-square-domino-square-- - --domino-square”. There are Gy such tilings, based
on the phase of the initial domino. Otherwise, k¥ > 1 and cells 3k — 1 and 3k are
covered either by two squares or by a single domino. Further, cells 3k + 1 through
3n are covered by *“domino-square-domino-square-- - --domino-square” (n— k times).
Next chop off the “tail” of the board after cell 3k — 2, reverse these tiles and reattach
it to the front end of the board. Call the new tiling A’. See Figure 9.15. Now break

3k-2

A[LIIIII-:-:—i—:—]

"tall“

ER o) 1111 lf,

hv_r‘,_/\—\,—r_,—zw—th\,—_/ N

57

Figure 9.15. By a similar procedure, a phased (3n)-tiling becomes a phased colored j-tiling (for
some 0 < § < n) with an accompanying subset.
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the board into n segments of three cells as in the previous proof, and using the trans-
formation of Figure 9.13, create the configuration B’ by turning each segment into
a colored square, a colored half-domino, or deleting it. Notice that by construction,
the first n — k segments will all be “square-domino” and therefore deleted. The next
segment will begin with the tile(s) formerly occupying cells 3k — 1 and 3k of A,
followed by the phased square or half-domino that occupied the first cell of A. If
the first tile of A was a square, then this segment will be transformed into a colored
square and we assign it the same phase as A. If the first tile of A was a domino, then
this segment will be transformed into a colored domino and we assign it the same
phase as A. From B’ we create j-subset X and phased j-tiling B exactly as in the
previous proof. Like the procedure in the previous proof, it is also easily reversed.

Since Gibonacci numbers generalize Fibonacci numbers, Identity 239 generalizes Iden-
tity 238. In fact, we could prove Identity 238 directly by viewing fs,—; as F3,, the number
of (3n)-tilings that begin with a square. Consequently, the resulting colored n-tiling will
also begin with a colored square.

9.3 Some “Random” Identities and the Golden Ratio

Among the multitude of Fibonacci identities, we have not yet proved what may be the
most important one of all. It is time to remedy that situation.

Identity 240 (Binet’s Formula) For n > 0,

(]

Here, F;, is the traditional definition of the Fibonacci number briefly discussed on
page 10. But how in the world can one expect to find a combinatorial interpretation of
such irrational quantities as v/5 and ¢ = :£Y59 The answer: use probability.

To prove Binet’s formula, we tile an infinite board by independently placing squares
and dominoes, one after another. At each decision, we use a square with probability 1/¢ or
a domino with probability 1/¢?, where ¢ = ‘—":235 ~ 1.618. Conveniently, 1/¢+ 1/¢? =
1. A random example is shown in Figure 9.16. In this model, the probability that a
tiling begins with any particular length n sequence of squares and dominoes is 1/¢". For
example, the probability that a random tiling begins as in Figure 9.16 is 1/¢12,

We apply this model to derive Binet’s formula. Since (1 — v/5)/2 = —1/¢, and
So = Fut1, Identity 240 says

1 _1\ ntl
fa= 75. [¢n+1 - (-El-) ] 5 9.1)

H ER i

1 23 4567 8 9101112...

Figure 9.16. A random tiling of squares and dominoes.
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- Let g, be the probability that a random tiling is breakable at cell n. Since there are
Jn different ways to tile the first n cells,

_f
= g 9.2)

For a tiling to be unbreakable at n, it must be breakable at n—1 followed by a domino.
Thus for n > 1, 1 — g = gn—1/¢?, or equivalently,

Gn-1
¢’

where go = fo = 1. Let ¢ = limy,_, g5 If we assume, as will shortly be apparent, that

the limit of (9.3) exists, then this limit ¢ must satisfy ¢ = 1 — g/¢?%. Solving for ¢, we

find that ¢ = (1+1/¢%)~! = ¢/+/5.
Combined with (9.2), this gives us the asymptotic form of Binet’s formula

n=1- (9.3)

- ¢n+1
fam 7

To derive Binet’s formula exactly, simply unravel recurrence (9.3) along with initial
condition go = 1 to get

1 1 1 -1\"
qn=1—F+F—E+"'+(—2) . 94)
This is a finite geometric series (Identity 216 from Chapter 8) that simplifies to
¢ (_1 ) n+1
== |1-|—= . 9.5
Thus by equation (9.2),
n+1 -1 n+l 1 -1 n+l
o=t e ()] 2 - (2],
V5 ¢ V5 ¢

as desired.
In fact, Binet's formula can be simplified as follows.

Corollary 30 For n >0, f, is the integer closest to "+ [\/5.

Proof. This is equivalent to saying that |f, — $"+1//5| < 1. By Binet’s formula this

amounts to showing that VB¢t > 2, which is clearly true for all n > 0. o
Binet’s formula implies that consecutive Fibonacci numbers essentially grow by a

factor of ¢. More precisely,

Corollary 31 For n,m >0,
lim fn+m - ¢m_

nao  fn
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Proof. By examining the limiting value of g, given in the derivation of Binet’s formula,
we have for any m 2> 0,

¢/V5= lim Iu _ jyy Inim

n—oo ¢  n—roo ¢"+"'"' )

Thus,
T fn+m/¢n+m IR T fn+m
= e e e Fgm
hence, limp—y00 frtm/fn = ™. o

Other identities involving Fibonacci numbers and the golden ratio are also obtainable
by our probabilistic approach. For instance, by substituting equation (9.2) into equation
(9.3) and multiplying by ¢™ we have also demonstrated

Corollary 32 Forn 2> 1,
¢n = fn + fn—1/¢~

And since f, = fo-1+ fn-2 = fa1(d— %) + fa-2, we also have

Corollary 33 Forn > 1,
¢n = ¢fn-—1 + fn—2-

By equation (9.4), we have
In—qn-1= (_1/¢2)n'
For a direct probabilistic proof of this, see [S]. Multiplying this by ¢™ gives us

Corollary 34 Forn > 1,

fom tfay = E°

¢n
Dividing this last equality by f,—1 gives us foralln > 1,
—1)»
fn/fn—l -¢= éﬂﬁ‘)_l )

which demonstrates that successive ratios of Fibonacci numbers get closer and closer to

o.

For other proofs of Binet’s formula and other Fibonacci identities using probability
see [5] and [4].

The same probabilistic argument can be used to derive a combinatorial proof of Binet’s
formula for Lucas numbers.

Identity 241 For n > 0,
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Here, we tile an infinite board one tile at a time, beginning at cell 1. The first tile is
either a square with probability 1/+/5, an in-phase domino with probability 1/(¢v/5) or
an out-of-phase domino with probability 1/(¢v/5). Thereafter, tiles are chosen at random
and independently with probability 1/¢ for squares and 1/¢? for dominoes. In this model,
any length n tiling has probability 1/(¢™~2+/5). Let r,, denote the probability that a tiling
is breakable at n + 1. Thus for n > 2,

o=
i ¢n—-1‘/§ !
where 7, = 1/v/5. By the same argument as Identity 240, for n > 2,
Tn—
Th=1- '%21'1

which unravels to

RS SO UUS SN e A S Co ¥/
Tn=1 + + +() + i

" ¢ ¢

Summing the series results in

i+ (7) ]
™m=—F7|1+|—-
R/ ¢
which is the same as our original identity with both sides divided by ¢"~1v/5.
As we did for Fibonacci numbers, we have an immediate corollary.

Corollary 35 For n > 2, L, is the integer closest to ¢™.

Notice that if we rewrite Binet’s formula as
VBF, = ¢" — (-1/¢)",
and add and subtract it to the previous identity
Ln=¢"+(-1/¢)",
we get the so-called deMoivre theorems.

Identity 242 For n.> 0,

n_ V5Fn+Ln
¢ = ——.

Identity 243 For n >0,
=1\" _ Ln—V5F,
o) 2 |
With just a little bit more work, we can derive a Binet-like formula for Gibonacci
numbers.

Identity 244 For n > 0, G, = a¢™ + B(—1/4)", where & = (G1 + Go/$)/V/5 and
B = (¢Go — G1)//5).
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We prove this using a random tiling model similar to the previous ones for Fibonacci
and Lucas numbers. Consider tiling an infinite board, one tile at a time, beginning at cell
1. The first tile is either a phased square or phased domino and is chosen in a random
manner to be described in the next paragraph. Thereafter, tiles are chosen at random and
independently with probability 1/¢ for squares and 1/¢? for dominoes. Our goal is to
assign the initial probabilities in such a way that any particular tiling of the first n cells
has probability p,, of occurring, where p,, depends only on n.

To achieve this goal, let P; and P, denote the probability that a tiling begins with a
domino or square respectively. For a tiling beginning with a domino, its phase is chosen
randomly from among the Gy possible phases. Likewise, a tiling beginning with a square
has its phase chosen randomly from among the G; possible phases. Hence the probability
that a random tiling begins with a particular phased domino or square is P; /Gy and P, /G,
respectively. Since we desire that a particular phased square followed by an unphased
square should have the same probability p, as a particular phased domino, we must have

F1_F

Gi¢ Go
Combined with Py + P, = 1, it follows that

Go ¢Gh
Pi=———r, Pb=—"——.
“T G+ 4G T°T Go+ G
Consequently, the probability of beginning with any particular n-tiling is
1 1 1

n = =P = .
TG e T (Got 9G)

If we let 7, denote the probability that a random tiling is breakable at cell n, we have
7n = Gnpr. In other words, for n > 1,

Gn =1n(Go + ¢G1)¢" 2. (9.6)
Next we compute r,, directly. Notice that r,, must satisfy for n > 2,

1
1-7,= rn-l?:

since a tiling is unbreakable at cell n if and only if it was breakable at cell n— 1 followed
by a domino. Unraveling this recurrence we get

1
Tn=1—7'n-1$2'
.1
SltEtE
1 1 1
=lmEt g e
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As
Gy
Go+¢Gr’
and the previous terms can be summed as a finite geometric series, we get (after a bit of
algebra including ¢2 +1 = ¢V5)

=" ( $Go — G ) ()8
\/_ ¢*"=2 \V5(Go + ¢G1) v g1/
Substituting this into equation (9.6), gives us the desired identity.

In fact, Binet-like formulas for most kth order recurrences can be probabilistically

derived using Markov chains, as is done in [4]. For probabilistic proofs of other Fibonacci
identities such as

=P, =

Tn=—=+ s

n2>1
Zn% = 10,
n>1
DL 2fn _gq
n>1

see [5] and [7].

9.4 Fibonacci and Lucas Polynomials

Another natural generalization of Fibonacci numbers are the Fibonacci polynomials de-
fined recursively by fo(z) = Fi(z) =1, fi(z) = Fo(z) = z and for n > 2,

fa(@) = zfra(z) + fn—2(z)'

For example, f2(z) = 22 + 1, f3(z) = 2% + 2z, fa(z) = z* + 3% + 1, fs(z) =
25 + 423 + 3z, and so on. Notice that when z = 1, the initial conditions and recurrence
simply generates the Fibonacci numbers, ie., fn(1) = f». Inductively, it is clear that
frn(z) is an nth degree polynomial and therefore has the form

Fale) = 3 FlmaR)e*.

k=0

Naturally, f(n, k) must be counting something. By conditioning on the last tile, we leave
it to the reader to verify

Combinatorial Theorem 12 The Fibonacci polynomial fo(z) = Y p—o f(n, k)z*, where
f(n,k) counts n-tilings with exactly k squares.

Since an n-tiling with exactly k squares must have (n — k) /2 dominoes and therefore
(n+ k)/2 tiles, it follows that

f(n, k) = ((n +kk)/2) ’

which equals 0 when 7 and k have opposite parity. .
Many Fibonacci number identities have analogous Fibonacci polynomial identities.
We list just two examples and invite the reader to explore more of their own.
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Identity 245 For m,n 2> 1,
fm+n(w) = fm(z)fn(x) + fm-l(x)fn—l (37)

Question: For each k > 0, how many (m + n)-tilings have exactly k squares?
Answer 1: f(m +n, k), that is, the z* coefficient of frmin(Z).

Answer 2: First we count those tilings that are breakable at cell m. Such a tiling
must have 0 < j < m squares in the m-tiling covering cells 1 through m and k — j
squares in the n-tiling covering cells m + 1 through m + n. Hence the number of
breakable tilings with k squares is

Y Fm,5)f (o k — 3)-

=0

By similar reasoning, the number of unbreakable tilings with k squares is

m—1
z f(m—l,j)f(n—l,k-—j).
j=0
Consequently for all k > 0
m m-1
f(m+n’k) b Zf(m,j)f(n,k—])"‘ Z f(m_l:j)f(n-lsk_j))
3=0 =0

which is precisely the way one would compute the z* coefficient of f,,(z)fa(x) +

Fm—-1(%) fn-1(2)-

For the next identity, we observe that the familiar tail swapping technique, first ex-
ploited in Identity 8 from Chapter 1, preserves the total number of squares in the tiling
pair. That is, tail swapping provides a bijection between tiling pairs with the same number
of squares (with the lone exception of when there are 0 squares in the tiling pair.)

Identity 246 Forn > 1,

F2(2) — fa-1(2) fata(z) = (1)

In a similar fashion, one can define Lucas polynomials by Lo(z) = 2, Ly(z) = z, and
forn > 2, Ly(z) = zLp—1(z)+ La—2(z). More generally, Gibonacci polynomials can be
defined by Gy(z) = Go, G1(z) = Gz, and for n > 2, Gp(z) = 2Gp-1(z) + Gr-2(2).
Just as with Fibonacci polynomials, we have

Combinatorial Theorem 13 The Gibonacci polynomial Gy (z) = 3 1_o G(n, k)z*, where
G(n, k) counts phased n-tilings with exactly k squares, where an initial domino has Gy
phases and an initial square has Gy phases.

Naturally, these ideas can be extended to higher order recurrences and colored tilings,
and we invite the reader to do so.
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9.5 Negative Numbers

Practically all of the identities in this book have had two things in common. The objects
that we have been counting have been nonnegative integer quantities, typically with a
nonnegative integer index. In Chapter 3 we introduced weighted tilings as a way to
understand linear recurrences with arbitrary coefficients and initial conditions. However,
we have not examined the “negative 7th” Gibonacci number G_, even though we could
compute it, given arbitrary initial conditions Gg, G;, and the Fibonacci recurrence G,, =
Gn-1+ G2 for all integers n. And yet, many of the identities proved in this book
remain true even for negative indices. It is easy to prove by induction that

Fop,= (_1)n+an or —n = (—1)"fn-2,

L—.n = ('—1)nLn,
and

G—n = (_l)an,
where H,, is the Gibonacci sequence defined by Hy = Go, Hy = Gy — G,, and for
n 2 2, H, = H,_) + Hy—2. These could almost serve as definitions for negatively

indexed Fibonacci, Lucas, and Gibonacci numbers. Propp [45] approaches this subject by
counting “signed matchings” on a 2 x 7 grid. There is a remarkable theorem by Bruckman
and Rabinowitz [18] that shows if an identity involving numbers generated by a second
order recurrence holds for all positive subscripts, then it also holds for negative subscripts.
Is there a natural combinatorial interpretation of generalized Fibonacci numbers that allow
us to understand identities such as

Gm-l-n = Gmfn + Gm—lfn—l

just as easily when m or n are negative? We leave that question for future consideration.

9.6 Open Problems and Vajda Data

Instead of ending this chapter with exercises, we leave the reader with some open problems.
We hope that the reader has been convinced of the power and simplicity of combinatorial
proofs, particularly for identities concerning Fibonacci numbers and their generalizations.

To indicate the power of our approach, we refer to the classic book Fibonacci & Lucas
Numbers and the Golden Section by Steven Vajda [58], which contains 118 identities
involving Fibonacci, Lucas, and Gibonacci numbers. These identities are proved by a
myriad of algebraic methods—induction, generating functions, hyperbolic functions, to
name a few. Although none are proved combinatorially in the book, we have used tiling
to explain 91 of these identities—and counting!

We leave the reader with a list of those 27 identities from [58] that have thus far
resisted combinatorial explanation as far as we know. Some of the original identities have
been restated (e.g., F, = fn—1 and other re-indexing) for combinatorial clarity.

This first identity is easily derived by elementary algebra using $—1/¢ = 1 and Go+G, =
G, but is there a combinatorial (probabilistic?) explanation?

V57:
(Go/é +G1)(Go— G1) = GoG2 — G-
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Vajda identities V69 through V76 seem awfully similar. One good idea might solve them
all!

V69:
2n n
Z ( ) )f2i-1 = 8" fon—1.
im0 \°
V70:
2n+1
2n+1
Z ( n+ ).f2i—1 = 5"Lont1.
i=0 ¢
V7t
2 ton
Z ( . )L2i o 5nL2n-
izo \?
V72
2n+1
2n+1
Z ( n+ )L2¢ = 5n+1f2n-
i=0 ¢
V73:
2n .
Z ( ; ) i2-1 o 5n—1L2n-
i=o \ *
V74:
2n+1
2n+1
> ()=t
=0
V75:
2n o
Y. ( . )L? = 5"Lop.
i=0
V76:

2n+1
2n+1
> ( ; )L? =5"* fy.

=0
Perhaps the next one can be explained using probability?

V71:

1 1
S =4-¢=3--.
For ¢ p

Perhaps the techniques of Chapter 6 can be applied to Vajda identities V78-V88?
V78:

21

k
, %+1Y, .
=3 ( ; )(-1)'tL(2k+1-2i)t-

i=0
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V79: .

L = (zkk) (-1)* + i (2:6) (—1)*Liok-2i)z-
V80: -

5k 2k = Zk: (2k z—l— 1) (—1)ie+) Flaks1-20e-

=
V8l1: °
5k f2k = (2:) (=1)C+0k kz-i (27:16) (1L o

V82: - >

Lie =L+ é By pp-a (’“ i 1).
V83:

Fiasnye = BEF2H 4 g #(_l)itsk-i (2ik_—1i) Rk
V84: .
Lows = 55 F2* 4 ; %(_l)itsk-i (Zki— —zl— 1) 22,

V85: For k > 0,

k
Farsay = ()¢ + Ry Z(‘l)u-[’(2k+2-2i)t-
i=0

V86: For k > 0,

k
Foksae =F Z(_l)“L(2k+1—2i)t-

=0

V87: For k > 0,
k
Lakyaye = (1) EED L LS (1) Lo oy
=0
V88: For k > 0,
k
Foryoe = Lt Z(-l)i(tH)F(zku-zi)t-
=0

V89:

F2ir FrF2"r

i=1

145
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This next identity seems to be asking for a probabilistic argument.

Va0:
% 1 1 1 Fony
" + - + .o + — 1 .
F4 FB F2" an
Vo3:
5"-"‘1 1 ir F2 _ 1 (n+1)r F'(2"+3)7' 9 3
D (1R = (1) —on -5
V94:
L Fionia)r
Y (-D)FLE = (-D‘"“”——F +2n+1.
i=1 T

Perhaps this next one can be done by a probabilistic argument?

V103:
Z (1) 1
And finally, a continued fraction identity.
V106:
F(t+l)m =L — (—]_)m
F:‘.m " (_l)m ’
Lm head
L. — (—l)m
N

L,
where the number L., appears ¢ times.

We have every confidence that all of the above identities will be combinatorially explained
someday. You can count on it!



Some Hints and Solutions for
Chapter Exercises

Chapter 1

Identity 12. Condition on the location of the last square.
Identity 13. Condition on the breakability of a (2n + 2)-tiling at cell n + 1.

Identity 14. Count the number of pairs of n-tilings where at least one ends in a square.
Condition on whether the first tiling ends in a square or not.

Identity 15. Same strategy as Identity 14.

Identity 16. Every n-tiling generates two tilings of size n+1 or n— 2. For the first copy,
attach a square to create all (n 4 1)-tilings ending with a square. The second copy will
depend on whether the last tile is a square or a domino.

Identity 17. Every n-tiling generates three tilings of size .+ 2 or n — 2. For the first two
copies, attach a domino or two squares. The third copy will depend on whether the last
tile is a square or a domino.

Identity 18. Follows immediately from Identity 17 (the fourth copy remains unchanged!)

Identity 19. The second equality follows immediately from Identity 14. It remains to find
a correspondence between the left side and the right side. The left side counts tiling 4-
tuples (4, B,C, D) or (E, F,G, H) where A, B, C, D, E, F, G, H have respective sizes
n,n,n+1,n+1,n—1,n—1,n+2,n+2. The right side counts (X,Y’) where X and
Y are both (2n + 2)-tilings. Each (A, B, C, D) generates four tiling pairs, the first three
of which are: (AdB,CD), (CD, AdB), (CsA, DsB). These three tiling pairs cover all
tiling pairs (X,Y’) where X or Y (but not both) are unbreakable at cell n+1 or X and
Y are both breakable at cell n + 1, and both X and Y have cell n + 2 occupied by a
square. Our fourth tiling pair generated by (4, B, C, D) has four cases, and conditions on
how C and D end. Likewise, (E, F,G, H) generates one tiling pair and has four cases,
depending on how G and H end. To reverse the procedure, consider the tiles that occupy
cellsn+1and n+ 2.

We note that any triple of numbers (a, b, ¢) where @ = 22 — 32, b = 22y, c = 2% +3°
form a Pythagorean triple. This identity is just the special case where ¢ = fp4+; and
b= fn.

Identity 20. Condition on the number of dominoes that appear among the first p tiles.
Given an initial segment of # dominoes and p — # squares. (2) counts the number of ways
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to select the ¢ positions for the dominoes among the first p tiles. This initial segment has
length 2i + (p — ) = p+ 4. The rest of the board has length (n+p) — (p+1%) =n—1
and can be covered f,,—; ways.

Identity 21. When n is even, Identity 21 unravels to become
fotfot-tfo=ltfaa+Hh+f+-+ fo1
which we prove here. We leave the odd case to you.

Question: For n even, in how many ways can an (n-+1)-board be tiled using squares
and dominoes?

Answer 1: Condition on the last square. Since n+ 1 is odd, a last square must exist
on an odd cell. For 0 < 2k+1 < n+1, the number of (n+1)-tilings with last square
on cell 2k+1 is for. Altogether, the number of (n+1)-tilings is fo+ f2+++ -+ fa.

Answer 2: There are f,,—; such tilings that begin with a domino. Among those that
begin with a square, we condition on the last square. There is 1 tiling consisting of
a single square followed by all dominoes. For 3 < 2k + 1 < n+ 1, the number of
(n + 1)-tilings that begin with a square and whose last square occurs at cell 2k + 1
is fop—1. Altogether, we have f,—1 + 1+ f + fs + - - + fo— tilings. See Figure
HS.1.

Answer 1: Last square occurs at cell 2k+1

2 ok

n nt+l

Answer 2: Begins with adominoor ...

B o o

...begins with a square followed by all dominoes or...

...begins with a square and the last square occurs on cell 2k+1..

2k+1 n n+l

Figure HS.L. fo+ fa 4+ -+ fa=1+ fo-1+ fi+ fs + -+ + fa-1 for n even.

Identity 22. Use Identity 21 with telescoping sums.

Identity 23. Question: How many (3n + 2)-tilings have their last domino ending on a
cell of the form 35 + 2 for 0 < j < n?

Answer 1: A tiling with its last domino ending on cell 35 + 2 begins with one of
f3; tilings, followed by a domino, and completed with all squares. Since j ranges
from 0 to m, there are a total of fo + f3 + f6 + - -+ + fan such tilings.

Answer 2: We demonstrate a one-to-one correspondence between the set of (3n+2)-
tilings with last domino ending on cells of the form 3 + 2 and the set of (3n 4+ 2)-
tilings with last domino cnding on cells of the form 35 or 35 + 1. If for some j,
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Last domino ends on cell of form 3j+2

-V“'- }
53 5

exchange last domino
and preceeding square

replace last domino
with 2 squares

exchange last domino
with subsequent square

replace 2 squares immediately
following last domino with a domino

Figure HS.2. A one-to-one correspondence between (3n + 2)-tilings with last domino ending on
cells of the form 35 + 2 and (3n + 2)-tilings with last domino ending on cells of the form 35 or
3j + 1. So half of all (3n + 2)-tilings must have a domino that ends on a cell of form 3j + 2 for
0<j<n.

0 < j < n, the last domino ends on cell 3j-+2 and is preceded by a square, exchange
the square and the domino to give a tiling whose last domino ends on cell 35 + 1.
If the last domino ends on cell 35 + 2 and is not preceded by a square (i.e., it is
preceded by a domino or covers cells 1 and 2), replace the domino with two squares
to give a tiling whose last domino ends on cell 35. See Figure HS.2. This process
is completely reversible, so we see that half of all f3,2 (3n + 2)-tilings have their
last domino ending on cell 3+ 2 for 0 < j < n.

Identity 24. Argument is similar to Identity 23 except that we exclude the all square tiling
from the right-hand side.

Identity 25. Argument is similar to Identity 23 except that we exclude the all square tiling
from the right-hand side.

Identity 26. Tail trashing technique. Let X be a (2n)-tiling and Y a (2n+1)-tiling. If the
last common fault occurs at an even cell, say 27, then X = Ad™®7 and Y = Bsd®J
Generate the (45)-tiling AB which is breakable at cell 2j. Otherwise the last common
fault occurs at an odd cell, say 2j — 1. Here X = Asd™ 7 and Y = Bd»~J+1, Generate
the (4)-tiling AdB which is unbreakable at cell 2;.

Identity 27. Same tail trashing technique as in Identity 26.
Identity 28. Same tail trashing technique as in Identity 26.

Identity 29. Let X be a (2n — 1)-tiling covering cells 2 through 2n and let Y a (2n+1)-
tiling covering cells 1 through 2n + 1. Proceed with tail trashing as in Identity 26.

Identity 31. The left side counts 4-tuples of n-tilings. The product on the right side counts
4-tuples (W, X,Y, Z), where W, X,Y, Z are tilings with respective lengths n +2,n —
2,1+ 1,n— 1, and begin on respective cells 1,3,1,2. (X is centered under W and Z is
centered under Y.)

We first consider the case where n is even. Here, the (Y, Z) pair must contain a
fault. If (W, X) also has a fault. then tail swapping both pairs produces (W', X*,Y’, Z’)
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which is a 4-tuple of n-tilings. When $W, X) is fault-free, (when W = sd™?s, X =
d(»=2)/2), we produce (Y, Z',d™?,d™2). This produces all 4-tuples of n-tilings except
(dn/z, dn/z’ dn/2, dn/z).

When n is odd, the (W, X) pair must have a fault. If (Y, Z) also has a fault, we again
generate (W', X', Y, Z'). When (Y, Z) is fault-free (when Y = d("+1)/2, Z = d(n—1)/2),
we associate ﬁsd("'l)/ 2,d»=1/25 W’ X'). This produces all 4-tuples of n-tilings except
(sd(n-l)/z, d n—l)/zs, sd(n—l)/2’ d(n—l)/zs).

Combinatorial Interpretations
1. For each (n + 1)-tiling create the n-tuple (b, b, . ..,b,) where b; = 0 if and only if
the tiling is unbreakable at cell <.

2 For1<i<n,iisin S if and only if the tiling is unbreakable at cell <.

3. Let T be a tiling of an n-board as described in the problem. For each tile of length
¢ > 2, break the tile into a domino followed by £ — 2 squares. Then remove the first
domino.

4. Let T be a tiling of an n-board as described in the problem. Break each odd length
tile into a square followed by dominoes. Remove the first square.

5. For each arrangement a; as . . . a,, create the n-tiling where cell < is covered by a square
if and only a; = .

6. Our ternary sequence is of the form 2900b12210b11 . ..2350% 1¢, where a;,b; > 0,
and ¢; € {0,1}. Reading from left to right, each 2 becomes a domino, each 1 becomes a
square, and for 1 <7< j, 0% becomes sd®. If ¢ = 1, it becomes two squares instead of
one.

7. Let X be an n-tiling described in the hint. If a tile of length m covers cells k + 1
through k + m with highlighted cell k + 4, then in the square-domino (2n — 1)-tiling Y,
we cover cells 2k + 1 through 2k +m — 1 with m — 1 dominoes and 1 square, with the
square on cell 2¢ — 1. Unless this tile is the last tile of X, cell 2k + 2m of Y is covered
with a square. Observe that the jth tile of X ends at cell k if and only if the 2jth square
of Y is at cell 2k.

8. Here X counts n-tilings where tiles can be of any length, and squares are assigned a
color: black or white. Y consists of all (2n)-tilings with squares and dominoes. Each tile
of X is “doubled” as follows. Black squares in X become dominoes in Y. For all other

tiles, a tile of length k becomes sd*~1s, a square followed by k — 1 dominoes followed
by a square.

9. Let bp = 1 and given the sequence (by,...,b,) create the (n + 1)-tiling where cell i
has a square if and only if b; # b;_;.

Chapter 2

Identity 50. Condition on the tile covering cell 1.

Identity 51. Each n-tiling generates two objects. The second object depends on whether
the tiling begins with a square or a domino.

Identity 52. Every n-tiling generates five bracelets of length » or n + 1. These bracelets
depend on whether they started with a square or a domino. When the dust settles every
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(n+1)-bracelet will be generated only once and every n-bracelet will be generated twice.
For the first three bracelets, create two copies of an in-phase n-bracelet and one copy of
an in-phase (n -+ 1)-bracelet that begins with a square. The other two bracelets generated
by the n-tiling will depend on how the n-tiling begins.

Identity 53. Offset the n-tiling pair by 1, then tail swap (if possible) to create the ordered
pair (A, B), where A is an (n+1)-tiling and B is an (n—1) tiling. From these, we generate
five (n+1)-bracelet pairs. The first four of them are (4, ssB), (4,dB), (4,d"B), (d"B, A),
where all of these bracelets are in-phase except for those that begin with d—. The fifth
bracelet will depend on how A and B begin.

Identity 54. The proof is similar to the proof of Identity 234.

Identity 55. Rewrite the identity as Lop43 + Lon—3 + Lon-7 ++++ = font1 + Lon—1 +
Lap—5+---. How many tilings (not bracelets) of odd length less than or equal to 2n+ 1
exist? Exploit the fact that f,, + fn—2 = Ly, For example (fo+ f2) + (fs+ f3) + L =
Lo+ Ls+ fL = Lo+ Ls + L. Also fo+ (f7 + f5) + (fs + f1) = fo+ Lv + Ls.

Identity 56. This is a special case of Identity 59.

Identity 57. L,, counts the number of phased n-tilings where an initial domino is either
in-phase or out-of-phase. (We shall still refer to these as n-bracelets.) For each n-bracelet
X, generate n + 1 bracelet pairs (whose lengths sum to n) as follows. For each cell
1 £j<n-1,if X is breakable at cell j, then generate the natural j-bracelet (with
the same phase as X)) and an in-phase (n — j)-bracelet. Otherwise, generate the natural
(j — 1)-bracelet (with the same phase as X) and an out-of-phase (n — j + 1)-bracelet.
Cell n generates two bracelet pairs (X, @) and (X, (™). This process generates all but
2f, bracelet pairs. The missing bracelet pairs are (0*,Y) and (0~,Y’), where Y is an
in-phase n-bracelet. (Due to Dan Cicio.)

Identity 58. For every n-bracelet X, we usually generate n tiling pairs whose lengths
sum to n — 2. The f,—) exceptions occur for in-phase bracelets that end with a square,
where we only generate n — 1 tiling pairs. Every tiling pair will be generated five times.
Specifically, tiling pair (A, B) is generated twice by the in-phase n-bracelet AdB, once by
the in-phase n-bracelet AssB, once from the out-of-phase bracelet dAB where d covers
cells n and 1. If A ends with a square, it is generated by the in-phase n-bracelet AdB;
If A ends in a domino, it is generated by the out-of-phase bracelet dAB where d covers
cells » and 1. We leave the details for the reader.

Identity 59. Proceed as in the proof of Identity 31. Exploit the fact that GoGo — G} =
G3Go — G2Gs.

Identity 60.

Set 1: Ordered pairs of n-bracelets (4, B). This set has size L2.

Set 2: Ordered pairs of bracelets, (A’, B’), where A’ has size n+1 and B’ has size
n — 1. This set has size Ly, 41 Ln—1.

Correspondence: To prove the identity, we establish an almost 1-to-1 correspondence
between Set 1 and Set 2. There are exactly five elements that will go unmatched.
These five elements are either all in Set 1 or all in Set 2, depending on the parity of

n.
We prove this identity when n is even, and leave the odd case for the reader. Let
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Figure HS.3. The problematic fifth bracelet pair.

A and B be n-bracelets. We exclude from consideration bracelet pairs (A, B) where
A and B consist only of dominoes. Since A and B can be of either phase, there
are four such bracelet pairs. The fifth bracelet pair we exclude, illustrated in Figure
HS.3, is where A begins with two squares, followed by all dominoes and B is the
out-of-phase bracelet consisting of all dominoes.

For all other bracelet pairs, there exists a unique number k, 0 < k < n/2 such
that the last k tiles of A and B are dominoes, but the previous tile of A or B (or
both) consists of a square. There are two cases to consider, as illustrated in Figures
HS.4 and HS.5.

Case I: B contains a square (which we denote by s) immediately before the last
k dominoes. (If k = 0, then this says that B ends with a square.) In this case, we
transfer s from B to A, where we position s immediately before the last k¥ dominoes
of A.

Figure HS.4. Growing and shrinking a pair of n-bracelets. Case I: the last three tiles in A and B
are dominoes and the fourth to the last tile in B is a square.
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Figure HS.S. Growing and shrinking a pair of n-bracelets. Case II: the last three tiles in A are
dominoes, the last four tiles in B are dominoes, and the fourth to the last tile in A is a square.

Case II: B contains a domino (which we denote by d) immediately before the
last k dominoes, and A contains a square (denoted by s) immediately before its last
k dominoes. In this case, we simply swap tiles d and s.

The transfer procedure of Case I and II results in converting the tiling pair (4, B)
to a tiling pair (A’, B') where A’ has length n+ 1 and B’ has length n — 1. Notice
that the value of k is the same for (4’, B’). Also, notice that A’ and B’ have the same
phase as A and B, respectively. (This would not have been true if we allowed the
problematic fifth bracelet among our input. The resulting configuration would have
been the same as the one obtained when B was the in-phase all domino configuration.)
Hence the procedure is easily reversed. So for n even, L?, = Lp41Lp—1 +5.

Identity 61. Question: How many phased 2n-tilings contain at least one square?

Answer 1: There are G3,, such tilings minus the Gy tilings consisting of all dominoes.

Answer 2: Since our board has even length 2n, the location of the last square must
also be even to accommodate the subsequent dominoes. For 1 < k < n, the number
of phased tilings whose last square occupies cell 2k is Gak—1.

Identity 62. This is the odd length version of the previous identity.

Identity 63. As in the proof of Identity 11, try to break the tiling into p + 1 segments
where the first p segments have length ¢ if possible and length £ + 1 if not.

Identity 64. See the proof given for Identity 41.

Identity 65. Let X be an (n — 1)-tiling, ¥ an n-tiling , and W. Z be (n — 2)-tilings. For
each (X,Y) pair we generate 4 (n + 1)-tiling pairs. For each (W, Z) pair we generate
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one (n+1)-tiling pair. Three of the four pairs from (X, Y) are: (Xd,Y's), (Y's, Xd), and
(X ss,Y's). The fourth tiling pair from (X,Y") depends on the last tile of Y. Be careful
to complete the set of all (n + 1)-tiling pairs using the last copy of (X,Y’) and the pairs
(W, 2).

Identity 66. Question: How many phased n-tiling pairs exist where at least one of the
tilings contains a domino?

Answer 1: G2 — G3, since we throw away the “all-square” tilings.

Answer 2: Let the top and bottom board tile cells 1 through n, and condition on
the location of the last domino. Suppose the last domino occupies cells z and ¢ + 1
for some 1 < i < n — 1. See Figure HS.6. If this domino occurs in the top board,
then we can freely tile cells 1 through ¢ — 1 of the top board, and cells 1 through
i+ 1 of the bottom board, in G;—1Gi+1 Ways. All subsequent tiles must be squares.
Otherwise, cell i+ 1 of the top board is a square and cells ¢ and i+ 1 of the bottom
board are covered by the last domino. Here, cells 1 through 7 of the top board may
be freely tiled G; ways, while cells 1 through ¢— 1 of the bottom board may be freely
tiled G;_; ways. Hence the number of tiling pairs with the last domino beginning at
cell 7 is Gi_lGi+1 + G¢G,',..1 = Gi_l(Gi+1 + Gi) = G¢_1Gi+2. Altogether, there

are ;{:11 G;-1Gi42 phased n-tiling pairs with at least one domino.
Last domino occurs in top b
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Figure HS.6. The last domino either occurs in the top board or it doesn’t.

Identity 67. Question: In how many ways can a phased n-board and a phased (n — 1)-
board be tiled?

Answer 1: G,Gp—1.

Answer 2: We let the top board cover cells 1 through  and the bottom board cover
cells 1 through n — 1. We condition on the last fault, if one exists. First of all, notice
that fault-free tilings consist of all dominoes and a single phased square that begins
at either the top or bottom board, depending on the parity of n. See Figure HS.7.
There are precisely GoG; fault-free tilings. Otherwise, there must exist a fault at
some cell 4, where 1 < ¢ < n — 1. For the last fault to occur at cell 7, we can
freely tile cells 1 through i of both boards G? ways, followed by the only fault-free
way to tile the remaining cells. See Figure HS.8. Altogether our boards may be tiled
GoG1+ Xi; G? ways.
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fault-free tilings when n odd

G; l& fault

Figure HS.8. There are G? tilings with last fault at cell 4.

Identity 68

Set 1: The set of phased tilings of an m-board on top of an n-board, where the initial
conditions of the m board are determined by Gy and G, and the initial conditions
of the n-board are determined by Hp and H;. This set has size G,, H,,.

Set 2: The set of phased tilings of an (m — 1)-board on top of an (n + 1)-board,
where the initial conditions of the (m — 1)-board are determined by Gg and G,, and
the initial conditions of the (n + 1)-board are determined by Hy and Hj. This set
has size Gm—lHn+1-

Correspondence: We find an almost one-to-one correspondence between these sets.
More precisely, we find a one-to-one correspondence between the “faulty” members
of Set 1 and the “faulty” members of Set 2, when they are drawn as in Figure HS.9.
After swapping the top tail with the bottom tail, we obtain a phased tiling of Set 2,
with the same faults as the original. Since tail swapping is easily reversed (just swap
the tiles after the right-most tails again), it follows that

GmHn - FFl = Gm-lHn+1 . FF2,

where FF1 and FF2 denote the number of fault-free tilings in Sets 1 and 2, respec-
tively.

The number of fault-free tilings depends on the parity of m. We first determine
FF1 when m is even. Here. the m-tiling consists entirely of dominoes. (Note that if
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&2,

1 2 n-m+l| n-m+2

Set1:

Set 2:

E«;} } ' m-1

1 2 n-m+l| n-m+2 n n+l

L)

Figure HS.9, After swapping the tails of the first phased tiling pair, we obtain the phased tiling
of the second tiling pair.

it began with a square, then it would have to have another square somewhere, cre-
ating a fault with the n-tiling below it.) The n-tiling will consist of only dominoes
starting with cell n —m + 3, see Figure HS.10, while cells 1 through n — m + 2
can be arbitrarily tiled in Hy,_,,4+2 ways. Since there are Gy ways to choose the all-
domino m-tiling, we have that FF1 = GoHy,— 2. Next we determine F'F2 when
m is even. Here, the (m — 1)-tiling consists of an initial phased square followed
by dominoes, while the (n + 1)-tiling must contain only dominoes beginning at cell
n —m + 2. Thus, when m is even, FF2 = Gy H,,_ 41, yielding

GmHn . GOHn-m+2 S Gm-—lHn+l . GlHn—m+1s

as desired.

Perhaps unexpectedly, when m is odd, FF1 and FF2 are swapped. That is, as
illustrated in Figure HS.11, FF1 = G1Hy_m41 and FF2 = GoHy— 2. Conse-
quently,

GmHn e GlHn-m+1 b Gm—IHn+1 - GoHn—-m+2,

as desired.

Set 1:

m
n n+l

n

n n+l

Figure HS.10. Fault-free tilings when m is even.
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Set 1:

m

n n+l

Hn—m+l

Figure HS.11. Fault-free tilings when m is odd.

Identity 69. See [13].

Identity 70. Every (n -+ 1)-tiling pair and every (n -+ 2)-tiling pair will generate two
objects. Let (X,Y’) be an (n + 1)-tiling pair. It generates (Xd,Yd) and (Xss,Yd). Let
(W, Z) be an (n + 2)-tiling pair. It generates (W's, Zs) and another tiling pair depending
on the last tiles of W and Z.

For a pretty geometric proof of the Fibonacci version of this identity, see [17].

Exercise 2a. Given an n-bracelet, create the binary sequence by, ..., b, where b; = 1 if
and only of the tiling is breakable at cell 1.

Exercise 2b. Let X be an (n - 1)-tiling that does not begin and end with dominoes. If X
begins with a square, remove the square to create an in-phase n-bracelet. If X begins with
a domino (and ends with a square), remove the final square and create an out-of-phase
n-bracelet.

Chapter 3

Identity 72. Follow the proof of Identity 34, but use colored tilings and bracelets. For
every n-tiling, we generate s2 - 4t colored bracelets of length n or n + 2. Each colored
(n + 2)-bracelet is generated once and each n-bracelet is generated ¢ times. Specifically,
given a colored n-tiling X, we generate ¢ copies of Bracelet 1. (Applying this to each
colored tiling X gives us ¢ copies of every in-phase colored bracelet.) By attaching two
colored squares to X in all possible ways (there are s? ways to do this), we generate
colored versions of Bracelet 2. By attaching all possible colored dominoes to X (there
are t ways to do this), we create colored versions of Bracelet 3. Likewise, we generate in
t ways, colored versions of Bracelet 4. At this point, we have generated s + 3¢ colored
bracelets. Finally, if X ends in a domino, we create ¢ copies of Bracelet 5a. If X ends
with a square we generate, in ¢ ways, colored versions of Bracelet Sb.

Identity 83. Condition on the phase of the colored bracelet.
Identity 84. Condition on the last nonwhite domino.

Identity 85. Condition on the last nonwhite domino.
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Identity 86. Question: In how many ways can we create a colored n-tiling and a colored
(n + 1)-tiling?

Answer 1: upunt1-

Answer 2: For this answer, we ask for 0 < k < n, how many colored tiling pairs
exist where cell k is the last cell for which both tilings are breakable? (Equivalently,
this counts the tiling pairs where the last square occurs on cell £ + 1 in exactly one
tiling.) We claim this can be done suzt""c ways, smce to construct such a tiling
pair, cells 1 through & of the tiling pa1r can be tiled u2 ways, the colored square on
cell £+ 1 can be chosen s ways, (it is in the n-tiling if and only if n — k is odd)
and the remaining 2n — 2k cells are covered with 7 — k colored dominoes in i
ways. See Figure HS.12. Altogether, there are

n
s z wnk
k=0
tilings, as desired.

=

Figure HS.12. A tiling pair where the last mutually breakable cell occurs at cell k.

Identity 87.

Set 1: Tilings of two colored n-boards (a top board and a bottom board.) By defin-

ition, this set has size u2.

Set 2: Tilings of a colored (n + 1)-board and a colored (n — 1)-board. This set has
size Un+$1Un-—1-

Correspondence: First, suppose n is odd. Then the top and bottom board must each
have at least one square. Notice that a square in cell ¢ ensures that a fault must occur
at cell £ or cell i — 1. Swapping the tails of the two n-tilings produces an (n + 1)-
tiling and an (n— 1)-tiling with the same tails. This produces a 1-to-1 correspondence
between all pairs of n-tilings and all tiling pairs of sizes n + 1 and n — 1 that have
faults. Is it possible for a tiling pair with sizes n + 1 and n — 1 to be fault-free?
Yes, with all colored dominoes in staggered formation as in Figure HS.13, which can
occur £* ways. Thus, when n is 0dd, ¥2 = Up41un—1 — ™

Figure HS.13. When n is odd, the only fault-free tiling pairs consist of all dominoes.
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1 2 3 4 5 6 7 8 9 10 11

Figure HS.14. When n is even, the only fault-free tiling pairs consist of all dominoes.

Similarly, when = is even, tail swapping creates a 1-to-1 correspondence between
faulty tiling pairs. The only fault-free tiling pair is the all domino tiling of Figure
HS.14. Hence, u2 = up41Un—1 + t". Considering the odd and even case together
produces our identity.

Identity 88. Perform tail swapping on a colored n-tiling pair offset by 7 cells.

Identity 89. Condition on whether the colored (m + n)-tiling is breakable at cell m. Use
the two copies to account for all bracelet phases in the target bracelet-tiling pairs.

Identity 90. Condition on the phase of the colored (m + n)-bracelet and whether it is
breakable at cell m. There are lots of cases to consider.

Identity 91. Colorize the proof of Identity 53.

Identity 92. Let every colored n-tiling generate two objects in such a way that every
colored (n — 1)-tiling is generated s times and every colored n-bracelet is generated once.
Let X be a colored n-tiling. From X, first generate an in-phase colored n-bracelet. The
second bracelet depends on how X begins. If X begins with a domino, then generate an
out-of-phase colored n-bracelet. If X begins with a square, remove that square to produce
a colored (n — 1)-tiling,

Identity 93. Let X be a colored n-tiling. Generate s? different colored (n + 2)-bracelets
that begin with two colored squares. Generate 2t colored (n -+ 2)-bracelets by appending
an in-phase domino or out-of-phase domino to X. Generate 2¢ more colored (n + 2)-
bracelets by appending an in-phase domino or out-of-phase domino to X again. Now let
Y be a colored (n + 1)-bracelet. Use Y to generate s colored (n -+ 2)-bracelets of the sort
that have not been generated twice.

Identity 94. Given a colored (m + n)-tiling, generate two objects by conditioning on
whether the tiling is breakable at cell m and if so, the tile on cell m + 1.

Identity 95. Colorize the following construction. Given an (m +-n)-bracelet B, we create
two objects. If B is breakable at cell m, create an m-bracelet, n-bracelet pair and a
second bracelet pair or tiling pair, depending on the tiles on cells 1 and m + 1. If B is
unbreakable at cell m, then generate two tiling pairs (of length m — 1 and n — 1) which
will depend on the phase of B. In this procedure, every tiling pair is created five times.
In the colorized version, every tiling pair is created s? + 4t times.

Identity 96. Colorize the solution to Identity 53.

Identity 97. Question: How many phased colored tilings of two boards of size 2n exist,
excluding the cases where both boards consist only of dominoes?
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Figure HS.15. A phased colored tiling pairs with last fault at cell 4. Three different arguments all
lead to the same number.

Answer 1: There are a3, — t>"a? such tilings, since each board can be tiled azy,
ways and we throw away the ((£ap)t"~!)? ways where both boards consist only of
dominoes.

Answer 2: Let the top board consist of cells 1 through 2n and the bottom board
consist of cells 2 through 2n + 1. See Figure HS.15. Since the phased tiling pair
has at least one square somewhere, there must be at least one fault that goes through
both tilings. Condition on the location of the last fault. We claim that there are
st2=%q;_,a; ways for the last fault to occur at cell i. The argument differs depending
on whether ¢ = 1,  is even, or ¢ > 1 is odd. When i = 1, the top board can be
tiled a; st"~! ways, and the bottom (all-domino) board can be tiled (tag)t"~! ways;
hence there are st>"~1a;ag such tilings. When i is even, the top board can be tiled

a;t*"~/2 ways, and the bottom board can be tiled a;_;st2"~9/2 ways, for a
product of st?»a;_,a; ways. When i > 1 is odd, the top and bottom board can
be tiled in a;st2"~i-1)/2 and q;_;¢{2"—*+1)/2 ways, respectively, for a product of
st?"~iq;_)a; ways again. Altogether, we have

2n
s Z tzn—iai—-la‘i
=1
phased colored tiling pairs with at least one square.

Identity 98.

Set 1: The set of phased colored tilings of two (2n + 1)-boards. This set has size
2
a’2n+1'



SOME HINTS AND SOLUTIONS FOR CHAPTER EXERCISES 161

Set 1: '

;
7
1 2

i ] 2n+] 2m42

1 2 i » = 2n1 2n2
o/ ] ¥F-—

Figure HS.16. After swapping tails of the first phased colored tiling pair, we obtain the phased
colored tiling of the second tiling pair.

Set 2: The set of phased colored tiling pairs of a (2n + 2)-board and a (2n)-board.
This set has size agp, 42027,

Correspondence: We find an almost one-to-one correspondence between the “faulty”
members of Set 1 and the “faulty” members of Set 2, when they are drawn as in
Figure HS.16. After swapping the top tail with the bottom tail, we obtain a phased
tiling of Set 2, with the same faults as the original. Since tail swapping is easily
reversed (just swap the tiles after the right-most tails again), it follows that

3,1 — FF1 = apnya0, — FF2,

where F'F'1 and F'F2 denote the number of fault-free tilings in Sets 1 and 2, respec-
tively.

Since 2n +1 is odd, any tiling of a (2n + 1)-board must contain a square. Thus
fault-free tilings in Set 1 happen when the only vertical line to pass through the top
and bottom tilings occurs between cells 1 and 2. Since the first tile of the bottom
board is phased, no tail swapping is allowed and this concurrence is not a fault. See
Figure HS.17. Thus FF1 counts the tiling pairs where both boards begin with a
phased squared followed by 7 colored dominoes. So FF1 = (a;t")2.

Tilings in Set 2 are fault-free when the (2n)-board begins with a phased domino
followed by all dominoes and the (2n + 2)-board begins with a phased domino or a
phased square followed by a colored square, and the remaining tiles are dominoes.
See Figure HS.18. Thus FF2 = (tao)(t")(tap + a18)t" = adt*"*1 + agay st®™

¥ oy . ‘-,"'-""'. ’ z'-';
al l % t : . i "f‘.‘l“-k::.'-'
E . . s k)

1 2 2n+1 2n+2

Figure HS.17. Fault-free tilings from Set 1.
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Figure HS.18. Fault-free tilings from Set 2.

Identity 99. Question: How many phased colored (n + 2)-tilings contain at least one
domino?

Answer 1: There are a2 such tilings minus the s"*1a; tilings consisting of all
squares.

Answer 2: Condition on the location of the last domino. For 0 < k < n, there are
axts™k tilings where the last domino covers cells k + 1 and k + 2. See Figure
HS.19.

CHEEE  BENnn

12 e~ k+l k2 n+l n+2
nk

a‘, s

Figure HS.19. Conditioning on the last domino.

Identity 100. Condition on the location of the last square.

Question: How many phased colored (2n + 1)-tilings exist?
Answer 1: agn4a.

Answer 2: Since our board has odd length, a last square must exist and occupy an
odd cell to accommodate the subsequent dominoes. There are a;t™ phased colored
tilings where the only square is the initial phased one. Otherwise, for 1 < k < n, the
number of phased tilings whose last square occupies cell 2k + 1 is azi St k., See
Figure HS.20.

Figure HS.20. The last square of a (2n + 1)-tiling must occupy an odd cell.
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Identity 101. Condition on the location of the last square, if any squares exist.
Identity 102. Condition the last tile that is not a black domino.

Identity 104. a,, counts tilings of an n-board with colored squares, dominoes, and tromi-
noes, where there are ¢; choices for a non-initial tile of length 7. An initial square has
P1 = a; phases, an initial domino has p, = a3 — 10, phases, and an initial tromino has
P3 = ag —cyaz — c201 = czag phases. The right side counts such tilings of length 2n+ 2
that either end with a domino or tromino. Condition on the last non-domino, if any exist.
If such a tile begins on cell 4, then cells 2,2 + 1, 2i + 2 are either covered by a tromino
(c3 choices) or a square followed by a domino (c; ¢, choices).

Identity 105. Similar to previous exercise, but for tilings of odd length.

Other Exercises

Exercise 3.2. For j > k, V; = c1Vj_1 + c2Vj—2 +- - - + ¢ V. Choose initial conditions
V1, Va2, ..., Vi so that the number of phases for a tile of length 7 is p; = ic;. This leads
toVi=candfor2<j <k V;=c1Vo1 +oVja +- - +¢j—1 Wi +¢;j. (One could
also let Vp = k&.)

Exercise 3.3. Since u,, has ideal initial conditions, then for n > 0, u,, counts tilings
of n-boards with dominoes and trominoes. The initial conditions for w, counts tilings
with squares and 5-ominoes, but what about the initial tile? Here, ;; = wy = 1, pp =
we—wy =0,p3 =wz —wp =1, py =wyg — w3 =0, and ps = wy = 1. Therefore the
initial tile can be a square or a tromino or a 5-omino. Let V' be a tiling of length 7 using
squares and 5-ominoes. Append two squares to the end of V. Call this new tiling V/ which
has length n + 2. Working from the end of V’, we convert V' to a domino-tromino tiling
as follows. If V’ ends with an even number of squares 2k, where k > 1, then convert
those squares into k dominoes. (Notation 12¥ — 2%) If V’ ends with 2k 4 1 squares,
then 12k+1 — 2%-13 meaning that the tiling now ends with a tromino. Moving leftwards,
we encounter a 5-omino preceded by m squares, where m > 0 (notation: 1™5). If m is
even, we convert 1255 — 25+13; if m is odd, we convert 125+1 — 232, Continue in the
same fashion based on the parity of the number of squares before each 5-omino. When
we reach the beginning of the tiling, if it starts with a tromino, then it remains a tromino.

Exercise 3.4. All initial conditions are ideal. Hence g,, counts n-tilings with squares and
trominoes, h,, counts n-tilings with dominoes and trominoes, and £,, counts n-tilings with
squares, dominoes, and trominoes. (4a) Consider an (n+- 3)-tiling with squares, dominoes,
and trominoes. There are f,,.3 such tilings with no trominoes. Otherwise, condition on
the location of the first tromino. Likewise, for (4b) and (4c), condition on the location of
the first domino and first square, respectively.

Exercise 3.5. For 1 < 7 < k— 1, we are restricted to counting a single phased tile. For
i 2 k, condition on the length of the last tile.

Chapter 4

Exercise 4.2. [ao,(bl,al),(bz,ag),...,(bn,an)] = [G1,(Go,1),(1,1),...,(1, 1)] .
Gn+1/fn-

Identity 113. Attach a square or unfold a stack of two squares.
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Identity 114. If the tiling that satisfies [ao,...,as,™m] ends with a stack of m squares
on cell n + 1, then replace that stack with a domino covering cells » + 1 and n + 2.
Otherwise, append a square on cell n+ 2.

Identity 115. The denominator is clearly f,. For the numerator, given an (n + 1)-tiling T
that can begin with a domino or a stack of up to three squares, we can create an (n+ 2)-
bracelet as follows. If T" begins with a domino or a single square, create sT'; If T begins
with two stacked squares, then “unfold” the first tile to create an in-phase bracelet that
begins with a domino; If T begins with three stacked squares, then rotate the previous
bracelet one cell to the left to create an out-of-phase bracelet.

Identity 116. For the numerator, modify the argument of the last identity, or just apply
reversal to it. The denominator’s problem is the same as the numerator’s, with one fewer
cell.

Identity 117. The denominator counts stackable n-tilings T, where all squares can have
up to four squares stacked, except the last one which can have at most three. Basic idea:
Given T, each tile gets “tripled” to create a (3n)-tiling U in such a way that if the ith
cell of T' contains one, two or three squares, then U is breakable at cell 3¢; four squares,
then U is not breakable at cell 3i; a domino, then U is breakable at cell 3¢ if and only
if the domino ends at cell i. Specifically, suppose for some k& > 0, T begins with k
stacks of squares of height 4, followed by a square of height 1 (we denote this by 4*1)
then U begins s?(ds)*s which is unbreakable at cells 3,6,9,...,3k, but breakable at
cell 3(k + 1). Likewise 4*2 generates d(ds)*s; 4*3 generates s(sd)*d and 4%d generates
d(ds)*d? which is unbreakable at cells 3,6, .. ., 3k +3, but breakable at 3k + 6. Continue
through T in this manner.

Identity 118. Same transformation as above, but the final 4%z string in T' (where z can
be 1,2,3,4 or d) attaches one extra square at the end (when z is 1,2,3 or d) and 44
generates s2(ds)*d and 4%5 generates d(ds)*d.

Identity 119. The above fraction is not in lowest terms. The number of n-tilings where all
squares can be assigned one of four colors is f3,42/2. To prove this, we need to show
that each n-tiling X that satisfies [4,4, ...,4] generates two uncolored (3n+2)-tilings. If
X satisfies [4,4,...,3], then we can convert X to a (3n)-tiling Y, to which we append
a domino or two squares. Otherwise, we need to generate two (3n + 2)-tilings that are
unbreakable at cell 3n. To do so, we convert the last 44 string to ss(ds)*s or d(ds)*s.

Identity 120. For the denominator, apply Problem 117. Let T be a tiling with height
conditions [2,4,...,4,3]. Condition on the first tile of 7", T is of the form 17" (a single
square followed by T”) or 21" (two stacked squares followed by T*) or dT" (A domino
followed by T"), where by Problem 117, T and T” can be viewed as a traditional
(3n)-tiling or (3n — 3)-tiling, respectively. Now 17" is easily converted to a (3n+1)-
bracelet beginning with a square. If 7’ begins with a square, then 27" becomes an in-phase
(3n+1)-bracelet beginning with a domino. If T” begins with a domino, then 27" becomes
an out-of-phase (3n + 1)-bracelet beginning with ds. If T begins with a domino, then
dT" becomes an out-of-phase (3n + 1)-bracelet beginning with two dominoes.

Identity 121. Apply the solution strategy of Problem 120 to Problem 118.
Identity 122. Condition on the last tile.
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Identity 123. The denominator counts the number of n-tilings with s colored squares and
t colored dominoes, which is uy,.

Identity 124. The denominator counts the number of n-bracelets with s colored squares
and t colored dominoes, which is vp.

Chapter 5

Identity 151. Choose a committee of size k and an overseer.

Identity 152. Choose a committee with a president and vice president.
Identity 153. Choose a committee with three distinguished officers.

Identity 154. When picking two distinct ordered pairs, one has either four or three elements
involved.

Identity 155. Condition on the number of committees with size m subcommittees.

Identity 156. Condition on the number of even-sized committees with size m subcommit-
tees.

Identity 157. From a class of m men and n women, a size n committee can be created
by picking k& men to use and k£ women to not use.

Identity 158. Create an upper house and lower house with m distinct members among
both houses.

Identity 159. Let m = n in Exercise 5.1 that follows.

Identity 160. When choosing 7 numbers from 1 to 27, the number of odd numbers chosen
must equal the number of even numbers unchosen. Why?

Identity 161. If a size n subset contains k “complementary pairs” (that is values of = for
which z and 2n + 1 — z appear in the subset), then it must contain n — 2k “singletons”
and hence there are k complementary pairs of numbers that do not appear in the subset.

Identity 162. Using the binomial coefficient interpretation, condition on largest excluded
element. Using the multinomial coefficient interpretation, condition on how many times
the element 7 + 2 is used.

Identity 163. Count ordered sets of n phased #-tilings, where the first ¢ of them must
begin with a phased square and the remaining n — ¢ of them may begin with a phased
square or a phased domino. In the sum, z; counts the number of dominoes that cover cells

tand 2+ 1.
Identity 164. Condition on the median element. For a generalization, condition on the rth
smallest element.

Identity 165. A (2n)-tiling has at least n tiles and at most 2n tiles. If it has n + k tiles,
then the number of dominoes is 2n — (n + k) = n — k and thus 2k squares.

Identity 166. A (2n — 1)-tiling has at least n tiles and at most 2n — 1 tiles. If it has n+ &
tiles, then the number of dominoes is 2n —1— (n+k) =n—k —1 and thus 2k +1
squares.

Exercise 5.1. Count committees with a leader from the first group.
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Exercise 5.2. A path from (0,0) to (a,b) consists of a + b steps. There are (“:‘b) ways
to decide which of those steps will be to the right.

Exercise 5.3a) Condition on the first step.
3b) Each path must pass through exactly one of the points

(a,0),(a—1,1),(a - 2,2),...,(0,a).

3c) Paths through (s,0), (s — 1,1),(s - 2,2),...,(0,s).

3d) Paths to (a + 1,b). Condition on last horizontal step.

3e) Condition on the horizontal step fromz =stoz=s+1.
3f) For a solution and history of this identity, see [57].

Exercise 5.4. How many paths that do cross the diagonal? After we reach the first point
above the line (z,z + 1), “tail swap” so that each horizontal step becomes vertical and
each vertical step becomes horizontal, resulting in a path from (0,0) to (n — 1,7+ 1).
Hence there are (nzfl) paths that cross the diagonal and therefore

2n) 2n ) 1 (o
n n—-1) a+l\n
paths that do not cross the diagonal. See [52], Chapter 6, Exercise, 19 which gives 66

combinatorially equivalent formulations of the Catalan numbers (and even more are being
added to the book’s website).

Exercise 5.5. Convert each partition to a path from (0,0) to (a, b).

Exercise 5.6. An ordered partition of n can be viewed as a tiling of length n, where the
tiles can have any positive length. Such a tiling is completely determined by which cells
are breakable.

Chapter 6

Exercise 5. Consider the set of ordered pairs (S,T) where S C {1,...,n} is a group
of students that are explicitly forbidden to be leaders (bad voices perhaps?) and T is the
assignment of leaders over the m days where elements are not from S. Let £ and O
denote the set of such (S,T’) where the size of S is even and odd, respectively. For a
given (S,T), let z denote the largest numbered element of {1,...,n} that does not lead.
Assuming z exists, we have a bijection (S, T") = (S ® =, T).

Identity 175. Consider the parity of the number of tiles.

Identity 177. How many colored n-bracelets consist of no dominoes where all squares
have the same color (black or white)? Let A; denote the set of colored bracelets with no
dominoes where cells ¢ and i + 1 contain a white square and black square respectively.

Exercise 9. Colored n-bracelets (one color for dominoes and two colors for squares) with
an even/odd number of dominoes. Converting the first instance of a domino to a white-
black square and vice versa, changes the parity. Two cases are singled out: all black
squares or all white squares.
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Chapter 7

Identity 195. Distribute n elements into some number of subsets, then place those subsets
into m cycles. Excluding the case where m = n and every element is in its own subset
and cycle, there must be a smallest such element that is not alone. Use that element to
change the parity of the number of subsets.

Identity 198. Condition on the number of elements that do not appear in the same subset
as element n + 1.

Identity 199. Condition on the largest element that is not alone.
Identity 200. Condition on the largest element that is not alone.

Identity 201. Condition on the smallest element & + 1 in the last subset,
Identity 202. Condition on the smallest element k + 1 in the last cycle.

Identity 203. The right side counts collections of m ordered lists whose disjoint union
is {1,...,n}. List the lists in increasing order of the first element. The left side counts
permutations of {1,...,n} where the cycles are placed (in no special order) into m
indistinguishable rooms. For definiteness, within a room, arrange the cycles in decreasing
order of leading element, then arrange the rooms in increasing order of leading element.

Identity 204. The right side counts the ways n students can be placed into £+m, classrooms
that are indistinguishable, except for the fact that £ of them are painted lavender and m
of them are painted mauve.

Identity 205. How many ways can you place the numbers 1,2,...,n into £ red cycles
and m green cycles?

Identity 206. Distribute 7 + 1 elements into at least m + 1 subsets. Then except for the
subset containing element n 4 1, place the remaining subsets into m cycles. Proceed as
in the previous identity. The excluded case occurs when we have exactly m subsets not
containing n + 1, and all of these subsets contain just one element.

Identity 207. Combine the proof technique of the Identities 194 and 206.

Identity 208. A subset of students from {1, ...,n} register for classes. Along with student
0, they are allocated among m + 1 indistinguishable (nonempty) classrooms. Let = denote
the smallest nonzero element that is either unregistered or in the same classroom as 0,
then add or delete = from 0’s classroom. The only time this procedure is undefined occurs
when 0 is alone and all n students have registered. This occurs {™} ways.

Identity 209. Students from {0, 1,...,n} are to be seated around at least m + 1 tables.
Then m of the tables (excluding the table with 0) will be selected for prizes. Let = be
the smallest positive numbered student that is either at 0’s table or at another unwinning
table. If z is at 0’s table, remove x and all elements to its right to form an unwinning
table. Otherwise, merge z’s table with 0’s table by attaching it to the end of 0’s cycle.
This procedure is defined, except when 0’s table is empty and exactly m other tables have
been filled, which occurs [] ways.

Identity 210. Among m people who wish to run for city council, some of their names
arg chosen to appear on the ballot, then an election takes place among n distinguishable



168 PROOFS THAT REALLY COUNT

voters. Let = denote the largest numbered person among the original m applicants to

receive 0 votes.
Note; After re-indexing, and changing the roles of m and n, this can also be done by

inclusion-exclusion. See Exercise 1 from Chapter 6. Why does m'{;} count the number
of onto functions from {1,...,n} to {1,...,m}?

Challenging Exercise. See [3].

Chapter 8

Identity 222. Count the number of 5-tuples (g, h, %, j, k) where 0 < g, h,3,j < k < n and
condition on how many distinct numbers are used.

Identity 223, Let Set 1 be {(%,5,k)|1 <%,j < k < n}, and Set 2 be
{(z1,22,23)|1 < 21 <2 < 73 < 7', where §,5,k € {1,1',2,2,...,n,n}},

and find a 1-to-4 mapping, based on whether ¢ < j ori > j or ¢ = j. For instance, when
i < 4, (4,4, k) maps to (3,5,k), (i', 5, k), (3, 5", k), (¢', ', k).

Identity 224. Part 1) For a length 2n binary string with 2k 1s to be palindromic (read the
same way backwards as forwards), then we must have k 1s in the first half, which can
be chosen (',:) ways, and the second half is then forced. Each non-palindromic string can
be paired up with its reversal. Part 2) A palindromic string must have 1 in the k + 1st
position, and the rest can be chosen (}) ways. Part 3) is similar to part 2. Part 4) All
binary strings of length 2n with an odd number of 1s must be non-palindromic.

Identity 225. Count the number of length pn binary vectors with pk 1s that are unchanged
after all entries are shifted p units to the right.

Identity 226. Same idea as in Identity 225 but don’t shift entries pn+1, pn+2,...,pn+r.

Identity 227. Consider that pn-+r has base p expansion (a;, . . ., @1, 7), Where (a;,...,a1)
is the base p expansion of n. Begin by choosing pk squares from a rectangle with dimen-
sions p by n. See [51], Chapter 1, problem 6.

Identity 228. Recall L, counts bracelets of length p. Except for sP, all tilings have size p
orbit.

Identity 229. 5% has an orbit of size one, +d? has an orbit of size two; bracelets of the
form zz where z is a p-bracelet have orbits of size p. All other bracelets have orbits of
size 2p.

Identity 230. sP9 has an orbit of size one; zP has an orbit of size g (where z is a ¢-
bracelet not consisting of all squares); 29 has an orbit of size p (where z is a p-bracelet
not consisting of all squares). All other bracelets have orbits of size pq.

Theorem 27. In Identity 221, when m divides n, we have » = 0 and since Uy = 0, this
implies U,, divides U,,.

Theorem 28. Quick proof. Ly, fm-1 = fom—1 divides fogm—y = Form = F,,. Slower
proof. Count (2km — 1)- tllmg. condmomng on the first breakable 2jm — 1 cell. This
leads to Fy = fokm-1 = 5=y fimrafom-1fome—i) = Fam Ty fomiofom(kmg) =

k j—1
mem—l j=1f'27m—2f2m(k jie
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Theorem 29. In a length (2k + 1)m Lucas tiling, condition on the first breakable cell of
the form (25 + 1)m. This gives us

k
Liok+1ym = Lmfotm + fom—1 ZLm—l(me—2)J 1 fok—jym-
j=1

Exploit the fact that fz;,—1 = frn—1Lm.






Appendix of Combinatorial
Theorems

This is a complete listing of the combinatorial theorems presented throughout the text of
this book.

Combinatorial Theorem 1 (p. 1) Let f,, count the ways to tile a length n board with
squares and dominoes. Then f, is a Fibonacci number. Specifically, for n > —1,

fn . Fn+1-

Combinatorial Theorem 2 (p. 18) For n > 0, let £,, count the ways to tile a circular
n-board with squares and dominoes. Then £y, is the nth Lucas number; that is

by, =Ly,

Combinatorial Theorem 3 (p. 23) Let Gy, G1,G2,... be a Gibonacci sequence with
nonnegative integer terms. For n > 1, G, counts the number of n-tilings, where the
initial tile is assigned a phase. There are Gy choices for a domino phase and G, choices
for a square phase.

Combinatorial Theorem 4 (p. 36) Letcy, C2, - . . , Ck. be nonnegative integers. Let up,uy,. . .

be the sequence of numbers defined by the following recurrence: For n 2 1,
Up = ClUn-1 + C2Up—2 + *+* + CkUn—k

with “ideal” initial conditions up = 1, and for j < 0, u; = 0. Then for all n 2> 0, u,
counts colored tilings of an n-board, with tiles of length at most k, where for 1 <i <k,
each tile of length i is assigned one of c; colors.

Combinatorial Theorem 5 (p. 36) Let s,t be nonnegative integers. Suppose up = 1,
uy = s and forn > 2,

Up = SUp-1 + tUn-2.
Then for all n > 0, u,, counts colored tilings of an n-board with squares and dominoes,
where there are s colors for squares and t colors for dominoes.

Combinatorial Theorem 6 (p. 36) Let s,t be nonnegative integers. Suppose Vo = 2,
Vi=sandforn>2,

Then for all n > 0, V,, counts colored bracelets of length n, where there are s colors for
squares and t colors for dominoes.

171
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Combinatorial Theorem 7 (p. 37) Let s,t,a9,a, be nonnegative integers, and for n 2

2, define

For n> 1, a,, counts the number of ways to tile an n-board with squares and dominoes
where each tile, except the initial one, has a color. There are s colors for squares and t
colors for dominoes. The initial tile is given a phase; there are a, phases for an initial
square and tag phases for an initial domino.

Combinatorial Theorem 8 (p. 37) Let c,¢2,...,Ck @0,01,-..,0r—1 be nonnegative
integers, and for n 2> k, define

Gn = C10p—1 + C2Qp—2 +** + CrQn—k-

If the initial conditions satisfy
i-1

a; 2 Z CjQi—j
i=1
for 1 < i <k, then for n > 1, ay, counts the ways to tile an n-board using colored tiles
of length at most k, where each tile, except the initial one, has a color. Specifically, for
1 < i < k, each tile of length i may be assigned any of c; different colors, but an initial
tile of length 1 is assigned one of p; phases, where

i-1
Di=a;— ZCjai_j.
j=1
Combinatorial Theorem 9 (p. 51) Let ag,a;,... be a sequence of positive integers,
and for n > 0, suppose the continued fraction [ag, @y, ... ,ay) is equal to ;L:, in lowest
terms. Then for n > 0, p,, counts the ways to tile an (n + 1)-board with height con-
ditions ay, ay,...,a, and g, counts the ways to tile an n-board with height conditions
Qly...yQn.

Combinatorial Theorem 10 (p. 59) Let ao,a;,... be a sequence of positive integers.
For n > 1, suppose the continued fraction [ag, (b1, 01), - - - , (bn, @rn)] computed by recur-
rence (4.9) is equal to ;L:. Then for n > 0, py, counts the ways to tile an (n + 1)-board
with height conditions ag, (b1,a1), - - ., (bn, @) and gn, counts of ways to tile an n-board
with height conditions ay,(b2,az) ..., (bn,ay)-

Combinatorial Theorem 11 (p. 97) For n > 0, the nth harmonic number is

[n+1]
Hy= 12

Combinatorial Theorem 12 (p. 141) The Fibonacci polynomial fn(z) = Y p_o f(n, k)zF,
where f(n,k) counts n-tilings with exactly k squares.

Combinatorial Theorem 13 (p. 142) The Gibonacci polynomial Gyn(z) = Y ";._; G(n, k)z*,
where G(n, k) counts phased n-tilings with exactly k squares, where an initial domino
has Gy phases and an initial square has G, phases.
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This is a complete listing of the identities, theorems, and lemmas presented throughout
the text of this book.

Identity 1 (p.2) Forn 20, fo+ fi+ fa+ -+ fo = fas2— L
Identity 2 (p. 2) Forn 20, fo+ f2+ fa+ -+ + fon = fonp1.
Identity 3 (p. 4) For m,n 20, fmin = fmfn + fm—-1fn-1.
dentity 4 (p. 4) Forn >0, (§) + ("7%) + ("3%) +++- = fa-
Identity 5 (p. 5) Forn >0, 3,50 50 ("77) ("77) = fonsa-
Identity 6 (p. 6) For n >0, fon—1=Y 5 (¥) fi-1-

Identity 7 (p. 6) For n > 1, 3f, = frni2 + fa-2.

Identity 8 (p. 8) Forn >0, f2 = foy1 a1+ (-1)™

Identity 9 (p. 8) Forn >0, Y p_o f2 = fafnt1-

Identity 10 (p. 9) For n >0, fo + fa—1 + g 2" 2k =27,
Identity 11 (p. 10) For m,p,t > 0, fmr(e1)p = Lo () FHf73 Fusse
Theorem 1 (p. 10) For m > 1,n > 0, if m|n, then F,|F,.

Theorem 2 (p. 11) Form > 1,n > O,_iflm divides n, then f,_, divides f,_;. In fact,
if n=qm, then fn_1 = fm—1 Zg=1 fg:.zfn—jm-

Theorem 3 (Euclidean Algorithm) (p. 11) If n = gm+-r, then ged(n, m) = ged(m, 7).
Lemma 4 (p. 11) For n > 1, ged(Fy, Fr—3) = 1.

Lemma 5 (p. 12) For m,n 2 0, Fiin = Fnp1 Frn + FnFrs.

Theorem 6 (p. 12) For m > 1, n > 0, gcd(Fr, Fin) = Fycd(n,m)-

Identity 12 (p. 13) Forn2> 1, fi + fa+ -+ + fan—1 = fon — 1.

Identity 13 (p. 13) For n>0, f2+ f2,; = fonyo.

173
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Identity 14 (p. 13) Forn > 1, f2 — f2_; = fon-1.

Identity 15 (p. 13) For n.2 0, font2 = frt1fn+2 — fr-1fn-
Identity 16 (p. 13) For n > 2, 2f, = fn41 + fa-2-

Identity 17 (p. 13) For n 2 2, 3f, = fa42 + fn—2-

Identity 18 (p. 13) For n 2 2, 4f, = fay2 + fo + fr—2-

Identity2 19 (p. 13) Forn > 1, (fa-1fnt2)? +(2fnfat1)? = (fatrfase — fa1fn)? =
(fons2)*.

Identity 20 (p. 13) For n. > p, fasp =Y g () fri-
Identity 21 (p. 13) Forn >0, Y°°_o(~1)*fi = 1 4+ (=1)"fn-r.

Identity 22 (p. 13) Forn >0, [I"_, (1 + S-_lf)gi) =,

n

Identity 23 (p. 13) Forn >0, fo+ fa+ fo + -+ + fon = 2 font2-
Identity 24 (p. 13) Forn > 1, fy + fa+ fr + -+ + fan-1 = 3(fon41 — 1)-
Identity 25 (p. 14) Forn 2 1, fo+ fs+ fs + -+ + fan—2 = 3(fan — 1).
Identity 26 (p. 14) For n >0, fo+ fa+ fa+ -+ + fan = fonfons1-
Identity 27 (p. 14) Forn> 1, fi+ fs+ fo+ -+ + fan-3 = f2_;-
Identity 28 (p. 14) Forn 2 1, f2 + fo + fio + -+ + fan-2 = fan-1f2n.
Identity 29 (p. 14) Forn 2 1, fs+ fr + fu + -+ + fan-1 = fon-1fon41-
Identity 30 (p. 14) Forn >0, f2, 5+ f2 =22, +2f2.,.

Identity 31 (p. 14) Forn > 1, f2 = farafas1foctfaz + 1.

Identity 32 (p. 18) Forn > 1, L, = fp + fn-2.

Identity 33 (p. 19) Forn >0, fon—1 = Ly fn-1.

Identity 34 (p. 20) Forn 20, 5f, = Ly, + Lpy2.

Xdentity 35 (p. 21) Forn >0, 3.0_ frLn—r = (n + 2) fy.

Identity 36 (p. 22) For n >0, L2 = Ly, +(-1)" 2.

Identity 37 (p. 23) For n > 1, G, = Gofn—2 + G1fn-1.

Identity 38 (p. 24) For m > 1,72 0, Giryn = G fn + Gm—1fn-1-
Identity 39 (p. 24) For n>0. ¥ ,Gi = Gpi0—- Gy
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Identity 40 (p. 25) For n> p >0, Gnyp = 520 (£)Gn-s.
Identity 41 (p. 25) Forn >0, 32", G;G;-1 = G%, — G.
Identity 42 (p. 26) For n > 1, GoHy + Y o%7* G;H; = GonHzn-;.

Identity 43 (p. 27) Let Go,G1,Ga,... and Ho,Hy,H,,... be Gibonacci sequences.
Thenfor0<m < n, GmHy - GoHp, = (—l)m(GOHn—m . Gn—mHO)'

Identity 44 (p. 28) Let Go,G1,G2,... and Hy,Hy,H,,... be Gibonacci sequences.
Then for m, b,k 2 0, GmHmihtk = GmarHmak = (—1)™(GoHnr — GrHi)-

Identity 45 (p. 28) For 0 < m < n, Gpym + (—1)"Gpem = GnLim.
Identity 46 (p. 30) For n > 1, Gpy1Gn—1 — G2 = (=1)*(G} — GoG2).
Identity 47 (p. 30) For 0 <m <n, Hy—p = (—1)™(Fpy1Hp — FnHny1)-
Identity 48 (p. 30) Forn>1and 0 <m < n,

Grim — (—1)™Gpm = Fn(Gn-1 + Gn41)-
Identity 49 (p. 31) For n >0, Y174 G; = Gony2Lons1-
Identity 50 (p. 32) For n>2, L, = fn—1 + 2fn—2
Identity 51 (p. 32) Forn >0, fo—1 + Lp =2fp.
Identity 52 (p. 32) For n >0, 5fn = La41 + 2Ln.
Identity 53 (p. 32) For n>0, 5f2 = L2, +4(-1)".
Identity 54 (p. 32) Forn > 1, L3 + L3 +---+ L%, = fan—1 — 2n.
Identity 55 (p. 32) Forn >0, Lony1—Lon—14+Lon-3—Lon-5+ -~ LsFL1 = fan41-
Identity 56 (p. 32) For n > 2, L} = Ln—2Ln—1Ln41Lnq2 +25.
Xdentity 57 (p. 32) Forn >0, Y o LrLa—r = (n 4+ 1)Ly + 2f5.
Identity 58 (p. 32) Forn>2, 55720 frfa2-r =nLn — fa-1.
Identity 59 (p. 32) For n > 2, G4 = Gn42Gn41Gn-1Gn—2 + (G2Go — G})%.
Identity 60 (p. 32) For n>1, L2 = Lp41Ln—1 4+ (-1)"-5.
Identity 61 (p. 32) Forn >0, Z;::l Gag—1 = Gan — Go.
Identity 62 (p. 32) For n >0, Gy + Y 1= G2k = Gan41.
Identity 63 (p. 32) For m,p,t > 0, G (est)p = 2 io () fi PG

Identity 64 (p. 32) Fori>1, Y7 Gi_1Giy2 = G2 — G.
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Identity 65 (p. 32) Forn>2, G%,, =4Gn1Gn +G2_,.
Identity 66 (p. 32) Forn>1, Y1) Gi—1Giy2 = G2 - GS.
Identity 67 (p. 32) For n > 1, GoG1+ Yy G? = GuGi-y.

Identity 68 (p. 32) Let Go,G1,Ga,... and Hy,Hy, Ha,... be Gibonacci sequences,
then for 1 < m < n, GmH Gm_1Hn+1 = (—1) [GoHn_m.l.g — GlHn-m+1]

Identity 69 (p. 32) Gn+1 +Gn+Gp-1+ 2Gn—-2+4Gp—3+8Gp—g+---+ 2"'_1G0 =
™(Go + G1).

Identity 70 (p. 32) Forn> 0, G2, 3 +G2 =2G2,, +2G% .
Identity 71 (p. 36) For n 2 1, ugp—1 = tn-1Vn.
Identity 72 (p. 37) For n >0, (s? + 4t)un = tVn + Vnqa.
Identity 73 (p. 38) For m,n 2 1, @min = Gmin + t0m—1Un-1.
Xdentity 74 (p. 39) Forn > 2, an—1 = (s—1)an-1+(s+t—1)[ao+a1+: - +an-2).
Ydentity 75 (p. 39) Forany1<c<s forn=>0,
an — " = (8 — €)an-1 + ((s — c)c +t)[aoc™ 2 + a1 3 + -+ + an-2).

Kdentity 76 (p. 40) For m,n 2 2, Gmin = Gmln + C20m—-1Un—1 + C3(Gm—2Un-1 +
am-l‘un-z)-

Identity 77 (p. 41) For n >0, c}(c102 + c3a0) + (€162 +¢3) 3 iy €] i = C1Gnya +
C3an

Identity 78 (p. 42) Let u,, be defined for n > 1 by up = un—3 + un—3 Where ug =1
and u; = 0 for j < 0. Then for n 2 0, Y50 (*7%) = tn.

Identity 79 (p. 42) Let uy, be defined for n > 1 by u, = sup—1 + tup—3 where up =1
and uj; =0 for j < 0. Then Y 5o ("7 7)tis" % = u,.

(]

Identity 80 (p. 42) Let u,, be defined for n > 1 by up, = Up—1 + Up_3 Where yg =1
and u; = 0 for j < 0. Then

:Zogg(n -b- c)(n Z c)(n Z b)—u;;n.,.g

Identity 81 (p. 43) Let g, be the kth order Fibonacci sequence defined by g; = 0 for
3<0,90=1, andforn 21, gn = gn-1 +gn-2+ -+ gn—k- Then for all integers n,

+ng 4+ + )
I R W

n n2

where the summation is over all nonnegative integers ny,nz, . .., Nk such that ny +2n, +
o+ kng =n.
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Identity 82 (p. 44) Let u,, be the k-bonacci number defined for n > 1 by un, = un—1 +
Un—k, Where ug =1 and for j < 0, uj = 0. Then for n > 0, Ugn4(x—1) equals

i i i n—(:cz+a:s+ +zk)) (n—(zx+zs+...+:ck)) o (n-(a:g-i-z,.;.....'.zk_l)).
T2 Tk
31=0 22=0 =

Identity 83 (p. 45) For n > 2, V,, = u, + tu,—2.
Identity 84 (p. 45) For n > 0,
Ugn41 = 8fug +uz + -+ - +ugn) + (£ — 1)[ua +uz + -+ + uzn)-

Identity 85 (p. 45) For n.> 0,

Ugp — 1= sfuy +ug + - + Usn—a] + (= 1)[uo +uz + -+« +uzn—2].
Identity 86 (p. 46) For n >0, sY 5o Uit"* = uqtiny1.
Identity 87 (p. 46) For n > 0, u2 = Un41un—1 + (-1)"t"
Identity 88 (p. 46) For n > 1 > 1, U2 — Up_pUngr = ()"~ "Ha_,.
Identity 89 (p. 46) For n > 1, V2 = Vo1 Vo + (8% +48)(—2)".
Identity 90 (p. 46) For n > 1 > 1, V2 = Vo yy Voo + (8% + 48) ()" "2 _,.
Identity 91 (p. 46) For n >0, Van = V2 — 2(~t)".
Identity 92 (p. 46) For n > 1, 2u, = sup—1 + Va.
Identity 93 (p. 46) For n >0, (s® + 4t)un + sVn41 = 2Voy.
Identity 94 (p. 46) For m >0, n > 1, 2upmyn = UmVn + Vins1Un—-1.
Identity 95 (p. 46) For m,n > 0, 2Vin4n = VinVo + (8% + 48)um—1un-1.
Identity 96 (p. 46) For n> 0, V2 = (s +4t)ul_; +4(-t)™
Identity 97 (p. 46) For n >0, %, —t*"ag = s E,_l t?"—tg;_;a;.
Identity 98 (p. 46) For n >0, a3, ., — a3t*™ = Gzn4202n — a3t +! — agayst?™.
Identity 99 (p. 46) Forn >0, 1> ;_os" ~ka) = any2 — s*ay.
Identity 100 (p. 46) For n >0, azn41 = a1t" + 53, t" Fazk.
Identity 101 (p. 46) For n> 0, azn, = aot™ +53 " kaor_s.
Identity 102 (p. 46) For n > 1,

azny1 = S(ao + a2 + -+ +a2n) + (t —1)(a1 + a3 + -+ +a2n1).
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Identity 103 (p. 46) For n 2> 1,
on — 1 =s(a1+a3+---+a2n_.1)+(t—l)(ao +ay + -+ +a2n—2)-

Identity 104 (p. 46) For n > 1,

n
(a2 — c101) + (crc2 + ¢3) Y G ai1 = 2020 + €302n-1.

i=1
Identity 105 (p. 46) For n > 1,
n—1 i
&Y (cam + c300) + (c102 +¢3) Y 5 Pag; = caa2n-1 + C3a2n-2-
=1

Identity 106 (p. 52) Letag > 0,a, > 0,a2 > 0,...,andforn 2> 0, let[ag, a1,...,8,) =
Pn/Gn in lowest terms. Then

a) po=ao, go =1, 1 = apa1 +1, g1 = a.

b) For n 2 2, p, = anPn—-1 + Pn-2.

c) Forn 2 2, gn = Gngn—1+ Gn—2-

Identity 107 (p. 52) If a; = 1 for all i > 0, then [ap,a1,...,an] = fat+1/fa-

Identity 108 (p. 53) For all n > 1, [2,1,1,...,1,1,2] = foi3/fn+1, where ap = 2,
an=2anda;=1forall 0<i<n

Identity 109 (p. 53) Suppose [ag, a1, ...,0n—1,0n] = Pn/qn. Then for n > 1, we have
[an, @n-1,---,01,00] = Pn/Pn-1.

Identity 110 (p. 54) The difference between consecutive convergents of [ap, a3, ...] is:
Tn—Tn—1 = (—1)"‘1 [@ngn-1. Equivalently, after multiplying both sides by q,,gn—1, we
have pngn-1 = Pn-1Gn = (_l)n—l'

Identity 111 (p. 55) 7, —rn—2 = (—1)"a,/gnqn—2. Equivalently, after multiplying both
sides by gnQn-2, we have ppgn—2 — Pn—20n = (—1)"ay.

Identity 112 (p. 57) Fori<m < j<mn,

K(i,j)K(m,n) — K(i,n)K(m,j) = (-1)"™K(i,m — 2)K(j +2,7n).
Identity 113 (p. 60) For n > 0, [ag,a1,...,6n,2] = [ap,a1,...,an,1,1).
Identity 114 (p. 60) For n > 0, if m > 2 then

[ao,a1,...,an,m] = [ag,a1,...,82,m—1,1].

Identity 115 (p. 60) For n >0, [3,1,1,...,1] = Lpy2/fn, where ag = 3, and o; = 1
forall0<i<n

Identity 116 (p. 60) For n > 1, [1,1,...,1,3] = Lpy2/Lny1, where a, = 3, and
a;=1forall0<i<n.
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Identity 117 (p. 60) Forn > 1, [4,4,...,4,3) = fanys/ fan Where an, = 3, and a; = 4
Jorall0<i<n.

Identity 118 (p. 60) For n > 1, [4,4,...,4, 5 = fan+4/fsnt+1, where a, = 5, and
a;=4forall0<i<n.

Identity 119 (p. 60) Let a; =4 for 0 < i <n. Then [4,4,...,4] = fanis/ fonsa:

Identity 120 (p. 60) For n > 1, [2,4,...,4,3) = Lans1/fan, Where ap = 2, @, = 3,
anda; =4 forall0<i<n.

Identity 121 (p. 60) For n > 1, (2,4,...,4,5) = Lans2/ fans1, where ag =2, an, =5,
and a; =4 forall 0 < i < n.

Identity 122 (p. 60) For nonsimple continued fractions,

P, = a3 Pyoy + bpPyg,
@n =anQn-1 + bnQn—2

for n > 2, with initial conditions Py = ag, P, = ayag + by, Qo =1, Q) = a,.

Identity 123 (p. 60) For nonnegative integers s,t, let ug = 1, u; = s, and for n > 2,
define u, = Sun_y + tun—z. Then the nonsimple continued fraction

[a01 (blv al)v (b2a ‘12)» veey (bna an)] = [37 (t) s)a (t’ S), SERR) (t1 3)] = un+1/un'

Identity 124 (p. 60) For nonnegative integers s, t, let vo = 2, v1 = 8, and for n 2 2,
define v, = sun—) + tv,—a. Then the nonsimple continued fraction

[aO’ (bl:al): (b21 02)1 vy (bn—laa'n—l)’ (b‘n’ an)]
= [s, (t,8), (¢, 9), ..., (¢, 8), (2, 8)] = Un41/¥n.

Identity 125 (p. 63) For 0 < k < n, n! = (})k!(n — k)!

Identity 126 (p. 64) For0< k<, (}) = (,”,)-

Identity 127 (p. 64) For 0< k <n, (except n=k=0), (}) = ("3}) + (+21)-
Identity 128 (p. 64) For n >0, Y ;5 (z) = 2™

Identity 129 (p. 65) Forn>1, 350 (5) =272

Identity 130 (p. 65) For 0 < k <, k(}) =n(}37))-

Identity 131 (p. 66) For n>1, Y p_o k(}) =n2"L

Identity 132 (p. 66) For m >0, n >0, (™™) = 5 (T)(i",)-

Identity 133 (p. 67) Forn 20, (z +y)" = Yo (R)z*y™F.

Identity 134 (p. 67) For 0<m <k <n, ()(5) = (2)(:=m).
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Corollary 7 (p. 68) For0 <m <k <, () and (}) have a nontrivial common factor.
That is, ged((), (7)) > 1.

Identity 135 (p. 68) For 0 <k <m Y0, (7)) = (&F)).

Identity 136 (p. 68) For 0 < k < n/2, Zm_k ( )("_m) (;;c-:-ll)

Identity 137 (p. 69) For 1 <r <k, Yor ™ (D) (229 = (7).
Identity 138 (p. 69) Fort>1,n >0,
2L R0 ()
21202220 720 s e
Identity 139 (p. 70) Fort > 1,n>0,c >0,
o o e =D S
21202530 220 3 Tt

Identity 140 (p. 70) Fort > 1,n 20,

LR C) () =

Identity 141 (p. 70) Fort > 1,n > 0,
S ey R g LSS
21202220  z¢20 C t

where G; is the jth element of the Gibonacci sequence beginning with Go and G.

Identity 142 (p. 70) Fort >1,n >0,

2o N ol B g T

21202220 ¢ 20

Identity 143 (p. 71) For k,n>0and k > 0, ((¥)) = ("+5~Y).

Identity 144 (p. 72) For 0<n<m, ((,.)) = (™7)).

n—1
Identity 145 (p. 72) Forn > 1, k >0, ((7)) = ((**})).

Identity 146 (p. 73) Forn >0,k 2 0 (exceptn =k =0), ((3)) = ((:")) +((*7))-
Identity 147 (p. 73) k((3)) = n((3*])).

Identity 148 (p. 73) For k> 1, ((})) = Xom=1 (((™))-

Identity 149 (p. 74) For n >0, i, (7)) = ((*Y)).
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Identity 150 (p. 74) Forn> 0, (7)) = X0 () ((.™.)-

Theorem 8 (p. 75) For n > 0, the number of odd integers in the nth row of Pascal’s
triangle is equal to 2° where b is the number of 1s in the binary expansion of n.

Lemma 9 (p. 75) Let 7, a, b be integers where v = . If a is even and b is odd, then r
is even. If a is odd and b is odd, then r is odd.

Lemma 10 (p. 75) If n is even and k is odd, then (T) is even. Otherwise,
(2)= (i) e
Identity 151 (p. 78) Forn >k >0, (n—k)(}) =n(";}).
Ydentity 152 (p. 78) Forn > 2, k(k —1)(}) =n(n —1)(}23)-
Xdentity 153 (p. 78) For n >3, Y50 k(k — 1)(k — 2)(7) = n(n — 1)(n - 2)("5°).
Xdentity 154 (p. 78) Forn > 4, (3)) =3(2) +3(3).
Xdentity 155 (p. 78) For 0 <m < n, Y50 (B) () = (R)2™
Identity 156 (p. 78) For 0 <m <n, Y150 (1) (%) = ()2~
Xdentity 157 (p. 78) For m,n>0, Y150 (B) (%) = ("3™)-
Xdentity 158 (p. 78) For m,n >0, Y50 () (25) = ()2

Identity 159 (p. 78) Forn 21, Yo k()” = n(2"3).
Identity 160 (p. 78) Forn > 0, Yr_o ()% = (27).

Xdentity 161 (p. 78) Forn >0, Y150 (5) ()27 2 = (%)
Identity 162 (p. 78) For m,n >0, Y i, ("1¥) = (“*+).

Identity 163 (p. 78) For t > 1,0 < ¢ < n, (G1£t)°Gyiy equals

IDT B (pay| ey ("27) (o )emer

21202220 2,20

where G; is the jth element of the Gibonacci sequence beginning with Gy and G.
n n—-m+1

Identity 164 (p. 78) For n,k >0, ((57)) = Xm=a (%)) (( ™).

Identity 165 (p. 78) For n> 0, Yo ("4") = fon-

Identity 166 (p. 78) Forn 2> 1, ZZ;; (;;'j_’;) = fon-1.
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Identity 167 (p. 81) For n >0, Y ;o (D) (-1)* =0.
Identity 168 (p. 82) For m >0 and n >0, Y i (1) (-1)* = (-1)™(*1).
Theorem 11 (p. 82) For finite sets Ay, Ag,...,An, |[A1UA2U---U A,| is equal to

Yo 1Al - Y JAin4]

1<ign 1<i<jsn

+ > NANAl - +(-1)"A1N 430N A4,
1<i<j<k<n

Identity 169 (p. 84) For m,n >0, Y r_o (1) (X)(=1)* = (~1)"8,m.-
Identity 170 (p. 84) Forn>m, 3o () ((F))(-1)* = (=1)"6n,m.

Identity 171 (p. 85) For any m,n >0, Y5 (F) (%)) (=1)* = (-1)*((,.*,))-
Identity 172 (p. 85) For n >0,

1 ifn=0or1 (mod 6),
Z( l)k(n k) { 0 ifn=2or5 (mod 6),
k>0

-1 ifn=3or4 (mod 6).
Identity 173 (p. 86) For n> 0, ¥ ,50(-1)*(";*)2" * =n+1.
Identity 174 (p. 88) For y,m >0, Y"5_o (573) (7)) (-1)*=1.
Identity 175 (p. 90) For n > 0,

1 ifn=0 (mod 3),
Z(-—l)""c (n k) 0 ifn=2 (mod 3),
k20 -1 ifn=1 (mod 3).
Identity 176 (p. 90) For n > 0,

2 ifn=0 (mod 6),

z(_ )k n (n k)_ 1 ifn=1or5 (mod6),

-1 ifn=2or4 (mod 6),

= -2 ifn =3 (mod 6).

Identity 177 (p. 90) For n >0, ;5 0(—1)%:2z (";%)2»%* = 2.

n—k

Identity 178 (p. 91) For n > 1, YpC) Hy, = nH, — n.

Identity 179 (p. 92) For 0<m <n, Yoy (%) He = (%) (Ha — 737).

Identity 180 (p. 92) For 0<m <n, Yoo ()= = () (Hy — Hp).

Identity 181 (p. 92) Forn>1, Y k- -kl =n! -
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Identity 182 (p. 93) Forn > 1, p, [}] = n!

Identity 183 (p. 94) Forn>k > 1, [}] = [{=}] + (n - 1)["Y).
Identity 184 (p. 94) Forn>2, Y, [¢](~1)* =0.

Identity 185 (p. 95) z(z +1)(z +2)---(z+n-1) = 31 _, [*]a™
Identity 186 (p. 97) For n. > 0, [*}'] = n!H,,

Identity 187 (p. 99) Forn>2, [3] = (n— 1)+ Yp=2 (22 fkhy)

° n—1)! - —1-t)!
Identity 188 (p. 99) For 1<t<n—1, [J] = &5 4g57n k-] Yo

o ) n—1)! - =-1){(n—
Identity 189 (p. 100) For 1< m <un, [3] = [3]{2=3 + X0 (4)) (neplilaomt
Theorem 12 (p. 102) On average, a permutation of n. elements has H, cycles.
Identity 190 (p. 102) Forn>1, 2, k[}] = [*37].

Identity 191 (p. 103) For n >k >1, {}} = {R21} + k{*'}.
Identity 192 (p. 104) Forn >0, z" =3 _, {:}m(k).
Identity 193 (p. 104) For k > 0, and for all = sufficiently small,

) n z*
Z{k}m T (1-2z)(1-2x)(1-3z)--- (1 —kz)’

n>0

Identity 194 (p. 105) For m,n >0, Y p_o [F]{}(=1)* = (—=1)"6m,n, where Sp . =
1 if m =n, and is 0 otherwise.

Identity 195 (p. 106) For m,n >0, Yo {F}[ ] (—1)* = (—1)"dm,n.
Identity 196 (p. 106) For m,n >0, Y r_.. [¢] (%) = [2+]].

Identity 197 (p. 106) For m,n >0, Y p_.. [¢]2¥ = (n+1)!

Identity 198 (p. 106) For m,n >0, Y. (D{%} = {Z*1}.
Identity 199 (p. 106) For m,n >0, Yreo k{"t*} = {™241}.
Identity 200 (p. 106) For m,n >0, Y eo(n+k)[*F¥] = [™*7H).
Identity 201 (p. 106) For m,n >0, Y po {X}(m+1)""* = {2+1}.
Identity 202 (p. 106) For m,n >0, Y h_,, [~]nl/k! = [2¥].

Identity 203 (p. 106) For 1<m<n, Yr_ [*1{¥} = (*)(n - 1)}/(m - 1)!
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Identity 204 (p. 106) For £,m,n >0, Yo () (FH" "} = {efim} (07)-
Ydentity 205 (p. 106) For &,m,n >0, Yero () (1[4 = [ofad (57)-
Identity 206 (p. 106) For m,n >0, Y5 {ZH1}[¥](=1)* = (~1)™(2).
Identity 207 (p. 107) For 0 <m < n, S, [ {2 }(-1)* = nl/m!
Identity 208 (p. 107) For 0 S m <1, Yo ({31} (-1) = ()" {7}
Identity 209 (p. 107) For 0 < m <1, Ty, [FH] () (-1)* = ()™ [].
Identity 210 (p. 107) For m,n > 0, Y e, (F)k*(-1)F = (-1)™m!{}.
Identity 211 (p. 109) Forn >0, Y, k= ("3").

Identity 212 (p. 109) Forn>0, Y, k= ((3)) -

Identity 213 (p. 110) Forn > 0, ¥, k8 = ("+1)%.

Identity 214 (p. 111) Forn >0, Y0 k% = ((%))°.

Identity 215 (p. 112) Forn >0, Y, ¥* = ((%))-

Identity 216 (p. 113) Forn>1, (zx—1)(1 +x+2®+---+2z" ) =2" - 1.
Identity 217 (p. 113) Forn >0, Y150 (5)2™ % = 3 [z +1)" + (z - 1)"].
Identity 218 (p. 114) Forn> 1, Y}, gty = nl— (n - 1)!

Theorem 13 (p. 114) If p is prime, then p divides (£) for 0 < k < p.

Lemma 14 (p. 115) Let g be a function from S to S and let = be an element of S.
Suppose for some integer n > 1, g™ (z) = x and let m be the smallest positive integer
for which g™ (z) = x. Then m divides n.

Corollary 15 (p. 115) Let S be a finite set and g be a function from S to S. Suppose n
is an integer such that g™ (z) = z for all x in S. Then the size of every orbit divides n.

Corollary 16 (p. 115) Let S be a finite set and suppose there exists a prime number
p for which g®)(z) = x for all z in S. Then every orbit either has size 1 or size p.
Consequently, if F is the set of all fixed points of g, then |S| = |F| (mod p).

Theorem 17 (Fermat’s Little Theorem) (p. 115) If p is prime, then for any integer a,
p divides a? — a.

Theorem 18 (p. 116) If n = pi*ps? - - - p§', where the p;s are distinct primes and all

exponents are positive integers, then p(n)=n(1-2) (1-L)...(1-1).
41 P2 Pt
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Corollary 19 (p. 117) If = and y are integers with no common prime factors, then

$(zy) = ¢(z)(y).
Identity 219 (p. 117) Y, $(d) =n.
Identity 220 (Wilson’s Theorem) (p. 117) If p is prime, then (p—1)! = p—1 (mod p).

Theorem 20 (p. 118) If G is a group of order n and the prime p divides n, then G has
a subgroup of order p.

Theorem 21 (p. 119) Let s,t be nonnegative relatively prime integers and consider the
sequence Up = 0,Uy = 1, and for n > 2, U, = sUp—1 + tUp—z. Then ged(Uy, Un) =
Ugcd(n,m)-

Lemma 22 (p. 119) For all m > 1, Uy, and tUp,— are relatively prime.
Identity 221 (p. 119) If n = gm +r, where 0 < r < m, then
q -
Un = (tUm—l)qu + U Z(tUm—l)J—lU(q—j)m+r+l-
Jj=1

Corollary 23 (p. 120) If n = gm + 1, where 0 < r < m, then ged(Uy,Up) =
ged(Un,, Uy).

Theorem 24 (p. 120) Let p be prime. For any a > 1 and any 0 < k < p%, (”: ) =
0 (mod p).

Lemma 25 (p. 121) For p prime and a >0, (1 +z)*" =1+ 2" (mod p).

Theorem 26 (Lucas’ Theorem) (p. 122) For any prime p, we can determine (}:) (mod p)
from the base p expansions of n and k Specifically, ifn = Y":_o bip* and k = ¥"-_, c:p*
where 0 < b, c; <p, then (}) = [T C ) (mod p).

Identity 222 (p. 123) For n > 0, Y, k* = ("31) + 14("$7) + 36 (") +24("F).
Identity 223 (p. 123) Forn> 1, Yoy k2 = 1(39).

Identity 224 (p. 123) For 0<r,s <landn >0, (5o17) = (7) (0) (mod 2).

Identity 225 (p. 123) For n,k > 0 and p prime, (£;) = (§) (mod p).

Identity 226 (p. 123) For0 < k <n,0 < s <r,andpprime, (5:17) = (£) (7) (mod p).
Identity 227 (p. 123) For 0 < k < n and p prime, (’”‘ (%) (mod p?).

Identity 228 (p. 123) For p prime, the pth Lucas number satisfies L, = 1 (mod p).

Identity 229 (p. 123) For p prime, Lo, = 3 (mod p).
Identity 230 (p. 123) For distinct primes p and q, Lpq = 1+ (Lq — 1)g (mod p).
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Theorem 27 (p. 123) If m divides n, then Uy, divides Un,.
Theorem 28 (p. 123) L., divides Fapm.

Theorem 29 (p. 123) Ly, divides L(z41)m

Identity 231 (p. 125) For n,m 22, fafm — fa-2fm-2 = fatm-1-
Kdentity 232 (p. 126) f3_, + 5 — f3_2 = fan1-

Identity 233 (p. 126) f2+2(f2+ f2 + -+ f2_1) = font1.
Identity 234 (p. 128) 5(f3 + f2 + -+ + fZ, 2] = fan—1+ 2n.
Identity 235 (p. 130) 35, (7)5l3) = 2°f,.

Identity 236 (p. 131) 272§, = Y0, 2¢ Ly,

Identity 237 (p. 132) 25°L%] (2)5¢ = 2°L,..

Identity 238 (p. 133) Forn > 1, fan—y =Y ey ()25 fi-1-
Identity 239 (p. 135) Gzn =37, (;‘) 21G;.

Identity 240 (Binet’s Formula) (p. 136) For n > (,

Ra= 2 [(1+2\/3)"_ (1__2%/_5)“]

Corollary 30 (p. 137) For n > 0, [, is the integer closest to ¢"+ /5.

Corollary 31 (p. 137) For n,m 2 (, hmn_.oo f nim — ™,
Corollary 32 (p. 138) Forn2>1, ¢" = f, + fn_1 /9.
Corollary 33 (p. 138) Forn > 1, ¢" = ¢fn—1 + fr—2.
Corollary 34 (p. 138) Forn > 1, fo— ¢fn-1 =G

dentity 241 (p. 138) Forn > 0, L = (2558)" + (155)".
Corollary 35 (p. 139) For n > 2, L, is the integer closest to ¢™.
Identity 242 (p. 139) Forn >0, ¢~ = Y5FgtLa,

Identity 243 (p. 139) For n > 0, (—‘;’%)n = 5022@3

Identity 244 (p. 139) Forn >0, G, = a¢™+B(~1/¢)", where o = (G1+Go/$) /5
and B = ($Go — G1)/V5).

Identity 245 (p. 142) For m,n > 1, fmyn(2) = fm(w)fn(m) + fm—l(m)fn-l(x)-
Identity 246 (p. 142) Forn > 1, ff,(a:) = fo-1(2) farar(z) = (1)~
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